FeTaQA: Free-form Table Question Answering

Related tags

Deep LearningFeTaQA
Overview

FeTaQA: Free-form Table Question Answering

FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form answer, supporting table cells} pairs. It yields a more challenging table QA setting because it requires generating free-form text answers after retrieval, inference, and integration of multiple discontinuous facts from a structured knowledge source. Unlike datasets of generative QA over text in which answers are prevalent with copies of short text spans from the source, answers in our dataset are human-generated explanations involving entities and their high-level relations.

You can find more details, analyses, and baseline results in our paper.

Citation

@article{nan2021feta,
  title={FeTaQA: Free-form Table Question Answering},
  author={Linyong Nan and Chiachun Hsieh and Ziming Mao and Xi Victoria Lin and Neha Verma and Rui Zhang and Wojciech Kryściński and Nick Schoelkopf and Riley Kong and Xiangru Tang and Murori Mutuma and Ben Rosand and Isabel Trindade and Renusree Bandaru and Jacob Cunningham and Caiming Xiong and Dragomir Radev},
  journal={arXiv preprint arXiv:2104.00369},
  year={2021}
Owner
Language, Information, and Learning at Yale
Language, Information, and Learning at Yale
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023