Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

Overview

pair-emnlp2020

Official repository for the paper:

Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation

If you find our work useful, please cite:

@inproceedings{hua-wang-2020-pair,
    title = "PAIR: Planning and Iterative Refinement in Pre-trained Transformersfor Long Text Generation",
    author = "Hua, Xinyu  and
      Wang, Lu",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
}

Requirements

  • Python 3.7
  • PyTorch 1.4.0
  • PyTorchLightning 0.9.0
  • transformers 3.3.0
  • numpy
  • tqdm
  • pycorenlp (for preprocessing nytimes data)
  • nltk (for preprocessing nytimes data)

Data

We release the data sets in the following link(1.2G uncompressed) Please download and uncompress the file, and put under ./data directory. For opinion and news domains, the The New York Times Annotated Corpus is licensed by LDC. We therefore only provide the ids for train/dev/test. Please follow the instructions to generate the dataset.

Text Planning

To train a BERT planner:

cd planning
python train.py \
    --data-path=../data/ \
    --domain=[arggen,opinion,news] \
    --exp-name=demo \
    --save-interval=1 \ # how frequent to save checkpoints 
    --max-epoch=30 \
    --lr=5e-4 \
    --warmup-updates=5000 \
    --train-set=train \
    --valid-set=dev \
    --tensorboard-logdir=tboard/ \
    --predict-keyphrase-offset \
    --max-samples=32 \ # max number of samples per batch
    [--quiet] \ # whether to print intermediate information

The checkpoints will be dumped to checkpoints/planning/[domain]/[exp-name]. Tensorboard will be available under planning/tboard/.

To run inference using a trained model, with greedy decoding:

cd planning
python decode.py \
    --data-path=../data/ \
    --domain=arggen \
    --test-set=test \
    --max-samples=32 \
    --predict-keyphrase-offset \
    --exp-name=demo \
    [--quiet]

The results will be saved to planning/output/.

Iterative Refinement

We provide implementations for four different setups:

  • Seq2seq: prompt -> tgt
  • KPSeq2seq: prompt + kp-set -> tgt
  • PAIR-light: prompt + kp-plan + masks -> tgt
  • PAIR-full: prompt + kp-plan + template -> tgt

To train a model:

cd refinement
python train.py \
    --domain=[arggen,opinion,news] \
    --setup=[seq2seq,kpseq2seq,pair-light,pair-full] \
    --train-set=train \
    --valid-set=dev \
    --train-batch-size=10 \
    --valid-batch-size=5 \
    --num-train-epochs=20 \
    --ckpt-dir=../checkpoints/[domain]/[setup]/demo \
    --tensorboard-dir=demo \
    [--quiet]

To run iterative refinement:

cd refinement
python generate.py \
    --domain=[arggen,opinion,news] \
    --setup=[seq2seq,kpseq2seq,pair-light,pair-full] \
    --test-set=test \
    --output-name=test_demo \
    --enforce-template-strategy=flexible \
    --do-sampling \
    --sampling-topk=100 \
    --sampling-topp=0.9 \
    --sample-times=3 \
    --ckpt-dir=../checkpoints/[domain]/[setup]/demo

Contact

Xinyu Hua (hua.x [at] northeastern.edu)

License

See the LICENSE file for details.

Owner
Xinyu Hua
PhD student at Northeastern University
Xinyu Hua
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022