Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

Overview

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper]

This is Official PyTorch implementation for HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning.

@inproceedings{lee2021help,
    title     = {HELP: Hardware-Adaptive Efficient Latency Prediction for NAS via Meta-Learning},
    author    = {Lee, Hayeon and Lee, Sewoong and Chong, Song and Hwang, Sung Ju},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
    year      = {2021}
} 

Overview

For deployment, neural architecture search should be hardware-aware, in order to satisfy the device-specific constraints (e.g., memory usage, latency and energy consumption) and enhance the model efficiency. Existing methods on hardware-aware NAS collect a large number of samples (e.g., accuracy and latency) from a target device, either builds a lookup table or a latency estimator. However, such approach is impractical in real-world scenarios as there exist numerous devices with different hardware specifications, and collecting samples from such a large number of devices will require prohibitive computational and monetary cost. To overcome such limitations, we propose Hardware-adaptive Efficient Latency Predictor (HELP), which formulates the device-specific latency estimation problem as a meta-learning problem, such that we can estimate the latency of a model's performance for a given task on an unseen device with a few samples. To this end, we introduce novel hardware embeddings to embed any devices considering them as black-box functions that output latencies, and meta-learn the hardware-adaptive latency predictor in a device-dependent manner, using the hardware embeddings. We validate the proposed HELP for its latency estimation performance on unseen platforms, on which it achieves high estimation performance with as few as 10 measurement samples, outperforming all relevant baselines. We also validate end-to-end NAS frameworks using HELP against ones without it, and show that it largely reduces the total time cost of the base NAS method, in latency-constrained settings.

Prerequisites

  • Python 3.8 (Anaconda)
  • PyTorch 1.8.1
  • CUDA 10.2

Hardware spec used for meta-training the proposed HELP model

  • GPU: A single Nvidia GeForce RTX 2080Ti
  • CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz

Installation

$ conda create --name help python=3.8
$ conda activate help
$ conda install pytorch==1.8.1 torchvision cudatoolkit=10.2 -c pytorch
$ pip install nas-bench-201
$ pip install tqdm
$ conda install scipy
$ conda install pyyaml
$ conda install tensorboard

Contents

1. Experiments on NAS-Bench-201 Search Space

2. Experiments on FBNet Search Space

3. Experiments on OFA Search Space

4. Experiments on HAT Search Space

1. Reproduce Main Results on NAS-Bench-201 Search Space

We provide the code to reproduce the main results on NAS-Bench-201 search space as follows:

  • Computing architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices (Table 3).
  • Latency-constrained NAS Results with MetaD2A + HELP on unseen devices (Table 4).
  • Meta-Training HELP model.

1.1. Data Preparation and Model Checkpoint

We include all required datasets and checkpoints in this github repository.

1.2. [Meta-Test] Architecture ranking correlation

You can compute architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices on NAS-Bench-201 search space (Table 3):

$ python main.py --search_space nasbench201 \
		 --mode 'meta-test' \
		 --num_samples 10 \
		 --num_meta_train_sample 900 \
                 --load_path [Path of Checkpoint File] \
		 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
		 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \                 
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' 

You can use checkpoint file provided by this git repository ./data/nasbench201/checkpoint/help_max_corr.pt as follows:

$ python main.py --search_space nasbench201 \
		 --mode 'meta-test' \
		 --num_samples 10 \
		 --num_meta_train_sample 900 \
                 --load_path './data/nasbench201/checkpoint/help_max_corr.pt' \
		 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
		 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \                 
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' 

or you can use provided script:

$ bash script/run_meta_test_nasbench201.sh [GPU_NUM]

Architecture Ranking Correlation Results (Table 3)

Method # of Training Samples
From Target Device
Desktop GPU
(Titan RTX Batch 256)
Desktop CPU
(Intel Gold 6226)
Mobile
Pixel2
Raspi4 ASIC FPGA Mean
FLOPS - 0.950 0.826 0.765 0.846 0.437 0.900 0.787
Layer-wise Predictor - 0.667 0.866 - - - - 0.767
BRP-NAS 900 0.814 0.796 0.666 0.847 0.811 0.801 0.789
BRP-NAS
(+extra samples)
3200 0.822 0.805 0.693 0.853 0.830 0.828 0.805
HELP (Ours) 10 0.987 0.989 0.802 0.890 0.940 0.985 0.932

1.3. [Meta-Test] Efficient Latency-constrained NAS combined with MetaD2A

You can reproduce latency-constrained NAS results with MetaD2A + HELP on unseen devices on NAS-Bench-201 search space (Table 4):

$ python main.py --search_space nasbench201 --mode 'nas' \
                 --load_path [Path of Checkpoint File] \
                 --sampled_arch_path 'data/nasbench201/arch_generated_by_metad2a.txt' \
                 --nas_target_device [Device] \ 
                 --latency_constraint [Latency Constraint] 

For example, if you use checkpoint file provided by this git repository, then path of checkpoint file is ./data/nasbench201/checkpoint/help_max_corr.pt, if you set target device as CPU Intel Gold 6226 (gold_6226) with batch size 256 and target latency constraint as 11.0 (ms), command is as follows:

$ python main.py --search_space nasbench201 --mode 'nas' \
                 --load_path './data/nasbench201/checkpoint/help_max_corr.pt' \
                 --sampled_arch_path 'data/nasbench201/arch_generated_by_metad2a.txt' \
                 --nas_target_device gold_6226 \ 
                 --latency_constraint 11.0 

or you can use provided script:

$ bash script/run_nas_metad2a.sh [GPU_NUM]

Efficient Latency-constrained NAS Results (Table 4)

Device # of Training Samples
from Target Device
Latency
Constraint (ms)
Latency
(ms)
Accuracy
(%)
Neural Architecture
Config
GPU Titan RTX
(Batch 256)
titan_rtx_256
10 18.0
21.0
25.0
17.8
18.9
24.2
69.7
71.5
71.8
link
link
link
CPU Intel Gold 6226
gold_6226
10 8.0
11.0
14.0
8.0
10.7
14.3
67.3
70.2
72.1
link
link
link
Mobile Pixel2
pixel2
10 14.0
18.0
22.0
13.0
19.0
25.0
69.7
71.8
73.2
link
link
link
ASIC-Eyeriss
eyeriss
10 5.0
7.0
9.0
3.9
5.1
9.1
71.5
71.8
73.5
link
link
link
FPGA
fpga
10 4.0
5.0
6.0
3.8
4.7
7.4
70.2
71.8
73.5
link
link
link

1.4. Meta-Training HELP model

Note that this process is performed only once for all NAS results.

$ python main.py --search_space nasbench201 \
                 --mode 'meta-train' \
                 --num_samples 10 \
                 --num_meta_train_sample 900 \
                 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
                 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \           
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' \
                 --exp_name [EXP_NAME] \
                 --seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_nasbench201.sh [GPU_NUM]

The results (checkpoint file, log file etc) are saved in

./results/nasbench201/[EXP_NAME]

2. Reproduce Main Results on FBNet Search Space

We provide the code to reproduce the main results on FBNet search space as follows:

  • Computing architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices (Table 2).
  • Meta-Training HELP model.

2.1. Data Preparation and Model Checkpoint

We include all required datasets and checkpoints in this github repository.

2.2. [Meta-Test] Architecture ranking correlation

You can compute architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices on FBNet search space (Table 2):

$ python main.py --search_space fbnet \
	--mode 'meta-test' \
	--num_samples 10 \
	--num_episodes 4000 \
	--num_meta_train_sample 4000 \
	--load_path './data/fbnet/checkpoint/help_max_corr.pt' \
	--meta_train_devices '1080ti_1,1080ti_32,1080ti_64,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
	--meta_valid_devices 'titanx_1,titanx_32,titanx_64,gold_6240' \
	--meta_test_devices 'fpga,raspi4,eyeriss'

or you can use provided script:

$ bash script/run_meta_test_fbnet.sh [GPU_NUM]

Architecture Ranking Correlation Results (Table 2)

Method Raspi4 ASIC FPGA Mean
MAML 0.718 0.763 0.727 0.736
Meta-SGD 0.821 0.822 0.776 0.806
HELP (Ours) 0.887 0.943 0.892 0.910

2.3. Meta-Training HELP model

Note that this process is performed only once for all results.

$ python main.py --search_space fbnet \
	--mode 'meta-train' \
	--num_samples 10 \
	--num_episodes 4000 \
	--num_meta_train_sample 4000 \
	--exp_name [EXP_NAME] \
	--meta_train_devices '1080ti_1,1080ti_32,1080ti_64,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
	--meta_valid_devices 'titanx_1,titanx_32,titanx_64,gold_6240' \
	--meta_test_devices 'fpga,raspi4,eyeriss' \
	--seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_fbnet.sh [GPU_NUM]

The results (checkpoint file, log file etc) are saved in

./results/fbnet/[EXP_NAME]

3. Reproduce Main Results on OFA Search Space

We provide the code to reproduce the main results on OFA search space as follows:

  • Latency-constrained NAS Results with accuracy predictor of OFA + HELP on unseen devices (Table 5).
  • Validating obatined neural architecture on ImageNet-1K.
  • Meta-Training HELP model.

3.1. Data Preparation and Model Checkpoint

We include required datasets except ImageNet-1K, and checkpoints in this github repository. To validate obatined neural architecture on ImageNet-1K, you should download ImageNet-1K (2012 ver.)

3.2. [Meta-Test] Efficient Latency-constrained NAS combined with accuracy predictor of OFA

You can reproduce latency-constrained NAS results with OFA + HELP on unseen devices on OFA search space (Table 5):

python main.py \
	--search_space ofa \
	--mode nas \
	--num_samples 10 \
	--seed 3 \
	--num_meta_train_sample 4000 \
	--load_path './data/ofa/checkpoint/help_max_corr.pt' \
	--nas_target_device [DEVICE_NAME] \
	--latency_constraint [LATENCY_CONSTRAINT] \
	--exp_name 'nas' \
	--meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
	--meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
	--meta_test_devices 'titan_rtx_64' 

For example,

$ python main.py \
	--search_space ofa \
	--mode nas \
	--num_samples 10 \
	--seed 3 \
	--num_meta_train_sample 4000 \
	--load_path './data/ofa/checkpoint/help_max_corr.pt' \
	--nas_target_device titan_rtx_64 \
	--latency_constraint 20 \
	--exp_name 'nas' \
	--meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
	--meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
	--meta_test_devices 'titan_rtx_64' 

or you can use provided script:

$ bash script/run_nas_ofa.sh [GPU_NUM]

Efficient Latency-constrained NAS Results (Table 5)

Device Sample from
Target Device
Latency
Constraint (ms)
Latency
(ms)
Accuracy
(%)
Architecture
config
GPU Titan RTX
(Batch 64)
10 20
23
28
20.3
23.1
28.6
76.0
76.8
77.9
link
link
link
CPU Intel Gold 6226 20 170
190
147
171
77.6
78.1
link
link
Jetson AGX Xavier 10 65
70
67.4
76.4
75.9
76.4
link
link

3.3. Validating obtained neural architecture on ImageNet-1K

$ python validate_imagenet.py \
		--config_path [Path of neural architecture config file]
		--imagenet_save_path [Path of ImageNet 1k]

for example,

$ python validate_imagenet.py \
		--config_path 'data/ofa/architecture_config/gpu_titan_rtx_64/latency_28.6ms_accuracy_77.9.json' \
		--imagenet_save_path './ILSVRC2012'

3.4. Meta-training HELP model

Note that this process is performed only once for all results.

$ python main.py --search_space ofa \
		--mode 'meta-train' \
		--num_samples 10 \
		--num_meta_train_sample 4000 \
		--exp_name [EXP_NAME] \
                --meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
                --meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
                --meta_test_devices 'titan_rtx_64' \
		--seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_ofa.sh [GPU_NUM]

4. Main Results on HAT Search Space

We provide the neural architecture configurations to reproduce the results of machine translation (WMT'14 En-De Task) on HAT search space.

Efficient Latency-constrained NAS Results

Task Device Samples from
Target Device
Latency BLEU score Architecture
Config
WMT'14 En-De GPU NVIDIA Titan RTX 10 74.0ms
106.5ms
27.19
27.44
link
link
WMT'14 En-De CPU Intel Xeon Gold 6240 10 159.6ms
343.2ms
27.20
27.52
link
link

You can test models by BLEU score and Computing Latency.

Reference

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (ICML17)

Meta-SGD: Learning to Learn Quickly for Few-Shot Learning

Once-for-All: Train One Network and Specialize it for Efficient Deployment (ICLR20)

NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search (ICLR20)

BRP-NAS: Prediction-based NAS using GCNs (NeurIPS20)

HAT: Hardware Aware Transformers for Efficient Natural Language Processing (ACL20)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets (ICLR21)

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark (ICLR21)

Owner
Ph.D. student @ School of Computing, Korea Advanced Institute of Science and Technology (KAIST)
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022