Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Overview

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

This repository is the official implementation for the following paper Analytic-LISTA networks proposed in the following paper:

"Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently" by Xiaohan Chen, Jason Zhang and Zhangyang Wang from the VITA Research Group.

The code implements the Peek-a-Boo (PaB) algorithm for various convolutional networks and is tested in Linux environment with Python: 3.7.2, PyTorch 1.7.0+.

Getting Started

Dependency

pip install tqdm

Prerequisites

  • Python 3.7+
  • PyTorch 1.7.0+
  • tqdm

Data Preparation

To run ImageNet experiments, download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val/ folder respectively as shown below. A useful script for automatic extraction can be found here.

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

How to Run Experiments

CIFAR-10/100 Experiments

To apply PaB w/ PSG to a ResNet-18 network on CIFAR-10/100 datasets, use the following command:

python main.py --use-cuda 0 \
    --arch PsgResNet18 --init-method kaiming_normal \
    --optimizer BOP --ar 1e-3 --tau 1e-6 \
    --ar-decay-freq 45 --ar-decay-ratio 0.15 --epochs 180 \
    --pruner SynFlow --prune-epoch 0 \
    --prune-ratio 3e-1 --prune-iters 100 \
    --msb-bits 8 --msb-bits-weight 8 --msb-bits-grad 16 \
    --psg-threshold 1e-7 --psg-no-take-sign --psg-sparsify \
    --exp-name cifar10_resnet18_pab-psg

To break down the above complex command, PaB includes two stages (pruning and Bop training) and consists of three components (a pruner, a Bop optimizer and a PSG module).

[Pruning module] The pruning module is controlled by the following arguments:

  • --pruner - A string that indicates which pruning method to be used. Valid choices are ['Mag', 'SNIP', 'GraSP', 'SynFlow'].
  • --prune-epoch - An integer, the epoch index of when (the last) pruning is performed.
  • --prune-ratio - A float, the ratio of non-zero parameters remained after (the last) pruning
  • --prune-iters - An integeer, the number of pruning iterations in one run of pruning. Check the SynFlow paper for what this means.

[Bop optimizer] Bop has several hyperparameters that are essential to its successful optimizaiton as shown below. More details can be found in the original Bop paper.

  • --optimizer - A string that specifies the Bop optimizer. You can pass 'SGD' to this argument for a standard training of SGD. Check here.
  • --ar - A float, corresponding to the adativity rate for the calculation of gradient moving average.
  • --tau - A float, corresponding to the threshold that decides if a binary weight needs to be flipped.
  • --ar-decay-freq - An integer, interval in epochs between decays of the adaptivity ratio.
  • --ar-decay-ratio - A float, the decay ratio of the adaptivity ratio decaying.

[PSG module] PSG stands for Predictive Sign Gradient, which was originally proposed in the E2-Train paper. PSG uses low-precision computation during backward passes to save computational cost. It is controlled by several arguments.

  • --msb-bits, --msb-bits-weight, --msb-bits-grad - Three floats, the bit-width for the inputs, weights and output errors during back-propagation.
  • --psg-threshold - A float, the threshold that filters out coarse gradients with small magnitudes to reduce gradient variance.
  • --psg-no-take-sign - A boolean that indicates to bypass the "taking-the-sign" step in the original PSG method.
  • --psg-sparsify - A boolean. The filtered small gradients are set to zero when it is true.

ImageNet Experiments

For PaB experiments on ImageNet, we run the pruning and Bop training in a two-stage manner, implemented in main_imagenet_prune.py and main_imagenet_train.py, respectively.

To prune a ResNet-50 network at its initialization, we first run the following command to perform SynFlow, which follows a similar manner for the arguments as in CIFAR experiments:

export prune_ratio=0.5  # 50% remaining parameters.

# Run SynFlow pruning
python main_imagenet_prune.py \
    --arch resnet50 --init-method kaiming_normal \
    --pruner SynFlow --prune-epoch 0 \
    --prune-ratio $prune_ratio --prune-iters 100 \
    --pruned-save-name /path/to/the/pruning/output/file \
    --seed 0 --workers 32 /path/to/the/imagenet/dataset

We then train the pruned model using Bop with PSG on one node with multi-GPUs.

# Bop hyperparameters
export bop_ar=1e-3
export bop_tau=1e-6
export psg_threshold="-5e-7"

python main_imagenet_train.py \
    --arch psg_resnet50 --init-method kaiming_normal \
    --optimizer BOP --ar $bop_ar --tau $bop_tau \
    --ar-decay-freq 30 --ar-decay-ratio 0.15 --epochs 100 \
    --msb-bits 8 --msb-bits-weight 8 --msb-bits-grad 16 \
    --psg-sparsify --psg-threshold " ${psg_threshold}" --psg-no-take-sign \
    --savedir /path/to/the/output/dir \
    --resume /path/to/the/pruning/output/file \
    --exp-name 'imagenet_resnet50_pab-psg' \
    --dist-url 'tcp://127.0.0.1:2333' \
    --dist-backend 'nccl' --multiprocessing-distributed \
    --world-size 1 --rank 0 \
    --seed 0 --workers 32 /path/to/the/imagenet/dataset 

Acknowledgement

Thank you to Jason Zhang for helping with the development of the code repo, the research that we conducted with it and the consistent report after his movement to CMU. Thank you to Prof. Zhangyang Wang for the guidance and unreserved help with this project.

Cite this work

If you find this work or our code implementation helpful for your own resarch or work, please cite our paper.

@inproceedings{
chen2022peek,
title={Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently},
author={Xiaohan Chen and Jason Zhang and Zhangyang Wang},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=moHCzz6D5H3},
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022