BErt-like Neurophysiological Data Representation

Related tags

Data AnalysisBENDR
Overview

BENDR

BErt-like Neurophysiological Data Representation

A picture of Bender from Futurama

This repository contains the source code for reproducing, or extending the BERT-like self-supervision pre-training for EEG data from the article:

BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data

To run these scripts, you will need to use the DN3 project. We will try to keep this updated so that it works with the latest DN3 release. If you are just looking for the BENDR model, and don't need to reproduce the article results per se, BENDR will be (or maybe already is if I forgot to update it here) integrated into DN3, in which case I would start there.

Currently, we recommend version 0.2. Feel free to open an issue if you are having any trouble.

More extensive instructions are upcoming, but in essence you will need to either:

a)  Download the TUEG dataset and pre-train new encoder and contextualizer weights, _or_
b)  Use the [pre-trained model weights](https://github.com/SPOClab-ca/BENDR/releases/tag/v0.1-alpha)

Once you have a pre-trained model:

1) Add the paths of the pre-trained weights to configs/downstream.yml
2) Edit paths to local copies of your datasets in configs/downstream_datasets.yml
3) Run downstream.sh

Comments
  • about the loss function

    about the loss function

    Very appreciate for your contribution.i am really interested in the self training in EEG. The only question is about calculating loss function. In your paper, The calculation of the denominator uses cosine similarity between the output of the transformer and the 20 distractors and the input of the transformer. However, in the code, the calculation of the denominator uses cosine similarity between the input of the transformer and the 20 distractors, and the output of the transformer. In other word, the output and the input switch positions. Are both the calculation approaches the same? Or why did you change the calculation approache in the code? Thanks!

    opened by stickOverCarrot 2
  • About deploy downstream.yml and downstream_datasets.yml

    About deploy downstream.yml and downstream_datasets.yml

    Tranks for supplying your code. But when I follow your markdown, I meet some problems image

    This is my project files image

    This is my downstream.yml image

    This is my downstream_datasets.yml image

    opened by YoloEliwa 1
  • Pre-trained weights?

    Pre-trained weights?

    Not an issue per se, but you state the pre-trained weights for your paper are available in this repo, yet I have had a good look around and I haven't found them, nor a means of downloading them. Please can you let me know where I could find them? I'm really keen to try out this exciting architecture you've put together!

    opened by SgtWhiskeyjack 1
  • result_tracking module

    result_tracking module

    There's a reference that's in the module import: downstream.py from result_tracking import ThinkerwiseResultTracker that looks like some type of tracking code for experiments?

    opened by bencten 1
  • dropout should change

    dropout should change

    Iteration: 4%|▍ | 13/330 [00:36<16:00, 3.03s/batches, bac=0.5, Accuracy=0.51, loss=0.695, lr=1.47e-6]D:\Anaconda\envs\LGG\lib\site-packages\torch\nn\functional.py:1338: UserWarning: dropout2d: Received a 3D input to dropout2d and assuming that channel-wise 1D dropout behavior is desired - input is interpreted as shape (N, C, L), where C is the channel dim. This behavior will change in a future release to interpret the input as one without a batch dimension, i.e. shape (C, H, W). To maintain the 1D channel-wise dropout behavior, please switch to using dropout1d instead. warnings.warn("dropout2d: Received a 3D input to dropout2d and assuming that channel-wise "

    opened by zy2021314 0
  • A more detailed explanation

    A more detailed explanation

    We need to use your code for research, may I ask when you can provide detailed explanation, because we have some difficulties in understanding the code without detailed explanation.

    opened by EchizenMike 0
  • preload in downstream.yml

    preload in downstream.yml

    In the "downstream.yml" file, what is the function of the "preload"? What's mean if I specify "preload: True" or "preload: False"?

    Thank you in advance

    opened by frannfuri 0
Releases(v0.1-alpha)
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

PostQF Copyright © 2022 Ralph Seichter PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the ma

Ralph Seichter 11 Nov 24, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Python for Data 866 Dec 16, 2022
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
Single machine, multiple cards training; mix-precision training; DALI data loader.

Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra

2 Jun 27, 2022
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks

qgrid Qgrid is a Jupyter notebook widget which uses SlickGrid to render pandas DataFrames within a Jupyter notebook. This allows you to explore your D

Quantopian, Inc. 2.9k Jan 08, 2023
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
Business Intelligence (BI) in Python, OLAP

Open Mining Business Intelligence (BI) Application Server written in Python Requirements Python 2.7 (Backend) Lua 5.2 or LuaJIT 5.1 (OML backend) Mong

Open Mining 1.2k Dec 27, 2022
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022