[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

Overview

CPT: Efficient Deep Neural Network Training via Cyclic Precision

Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

Accepted at ICLR 2021 (Spotlight) [Paper Link].

Overview

Low-precision deep neural network (DNN) training has gained tremendous attention as reducing precision is one of the most effective knobs for boosting DNNs’ training time/energy efficiency. In this paper, we attempt to explore low-precision training from a new perspective as inspired by recent findings in understanding DNN training: we conjecture that DNNs’ precision might have a similar effect as the learning rate during DNN training, and advocate dynamic precision along the training trajectory for further boosting the time/energy efficiency of DNN training. Specifically, we propose Cyclic Precision Training (CPT) to cyclically vary the precision between two boundary values to balance the coarse-grained exploration of low precision and fine-grained optimization of high precision. Through experiments and visualization we show that CPT helps to (1) converge to a wider minima with a lower generalization error and (2) reduce training variance, which opens up a new design knob for simultaneously improving the optimization and efficiency of DNN training.

Experimental Results

We evaluate CPT on eleven models & five datasets (i.e., ResNet-38/74/110/152/164/MobileNetV2 on CIFAR-10/100, ResNet-18/34/50 on ImageNet, Transformer on WikiText-103, LSTM on PTB). Please refer to our paper for more results.

Results on CIFAR-100

  • Test accuracy vs. training computational cost

  • Loss landscape visualization

Results on ImageNet

  • Accuracy - training efficiency trade-off

  • Boosting optimality

Results on WikiText-103 and PTB

Code Usage

cpt_cifar and cpt_imagenet are the codes customized for CIFAR-10/100 and ImageNet, respectively, with a similar code structure.

Prerequisites

See env.yml for the complete conda environment. Create a new conda environment:

conda env create -f env.yml
conda activate pytorch

Training on CIFAR-10/100 with CPT

In addition to the commonly considered args, e.g., the target network, dataset, and data path via --arch, --dataset, and --datadir, respectively, you also need to: (1) enable cyclic precision training via --is_cyclic_precision; (2) specify the precision bounds for both forward (weights and activations) and backward (gradients and errors) with --cyclic_num_bits_schedule and --cyclic_num_grad_bits_schedule, respectively (note that in CPT, we adopt a constant precision during backward for more stable training process as analyzed in our appendix); (3) specify the number of cyclic periods via --num_cyclic_period which can be set as 32 in all experiments and more ablation studies can be found in Sec. 4.3 of our paper.

  • Example: Training ResNet-74 on CIFAR-100 with CPT (3~8-bit forward, 8-bit backward, and a cyclic periods of 32).
cd cpt_cifar
python train.py --save_folder ./logs --arch cifar100_resnet_74 --workers 4 --dataset cifar100 --datadir path-to-cifar100 --is_cyclic_precision --cyclic_num_bits_schedule 3 8 --cyclic_num_grad_bits_schedule 8 8 --num_cyclic_period 32

We also integrate SWA in our code although it is not used in the reported results of our paper.

Training on ImageNet with CPT

The args for ImageNet experiments are similar with the ones on CIFAR-10/100.

  • Example: Training ResNet-34 on ImageNet with CPT (3~8-bit forward, 8-bit backward, and a cyclic periods of 32).
cd cpt_imagenet
python train.py --save_folder ./logs --arch resnet34 --warm_up --datadir PATH_TO_IMAGENET --is_cyclic_precision --cyclic_num_bits_schedule 3 8 --cyclic_num_grad_bits_schedule 8 8 --num_cyclic_period 32 --automatic_resume

Citation

@article{fu2021cpt,
  title={CPT: Efficient Deep Neural Network Training via Cyclic Precision},
  author={Fu, Yonggan and Guo, Han and Li, Meng and Yang, Xin and Ding, Yining and Chandra, Vikas and Lin, Yingyan},
  journal={arXiv preprint arXiv:2101.09868},
  year={2021}
}

Our Related Work

Please also check our work on how to fractionally squeeze out more training cost savings from the most redundant bit level, progressively along the training trajectory and dynamically per input:

Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian Li, Kailash Gopalakrishnan, Zhangyang Wang, Yingyan Lin. "FracTrain: Fractionally Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training". NeurIPS, 2020. [Paper Link] [Code]

Owner
Efficient and Intelligent Computing Lab
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022