A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Overview

Dying Light 2 PAKFile Utility

A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.
This tool aims to make PAKFile (.pak files) modding a breeze for both Dying Light 2 modders and mod makers.
See the roadmap for a better idea of what's to come!
More TBA Soon.

Features

  • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
  • Ability to Extract PAKFiles into a Folder to Edit
  • Ability to Build a PAKFile from a Folder

Known Bugs / Issues

This is a collective list of known bugs / glitches / issues.

  • None / TBA

Running the Utility

As an Executable / Binary

Step-by-step instructions to running the utility as a standalone executable.

  1. Download the Latest Release from GitHub.
  2. Save it somewhere easy to remember. A mod management folder is recommended.
  3. Right-Click the DL2-PAKFile-Utility.exe File and Select Run as Administrator
  4. Follow the On-Screen Prompts

From Source

Step-by-step instructions to running the utility from source.

  1. Open an Elevated Command Prompt
  2. Make a Virtual Environment and Activate it
  3. pip install -r requirements.txt
  4. python main.py
  5. ???
  6. $$ PROFIT $$

Making Mods

The location of the two default PAKFiles (data0.pak and data1.pak) is \steamapps\common\Dying Light 2\ph\source . Opening these PAKFiles and extracting them allows you to see all of the scripts that run in the game's engine, the C-Engine. To make a mod, extract one of these PAKFiles and then simply find the files inside of the extracted contents that include what you wish to change, modify them how you'd like, delete everything else that wasn't changed, and then build a PAKFile from that folder! To use the mod you've made, build it as dataN.pak where N is the next highest available number in your default PAKFile location (for example, if you only have data0.pak and data1.pak, you'd build a data3.pak). If other users wish to use it and they have a different number of PAKFiles than you, they may simply rename it to be a higher number in the filename.

Theory on Mod Loading Order

As writing a new mod makes use of upping the integer in the dataN.pak filenames, I'm assuming the higher the integer, the higher the order of precedence is. This is perhaps to say, for example, if one mod (data3.pak) gives unlimited stamina and another (data4.pak) removes unlimited stamina, I believe data4.pak's effects would take priority over data3.pak's and would render stamina untouched / not unlimited.

FAQ

Q1: Why does this need to be ran as an administrator?
A1: Some people store their games / mod management folders in weird places that non-elevated applications typically can't access. This is simply insurance on that possibility, making sure any user who stores their files anywhere can use this tool!
Q2: Why not opt for a better compression algorithm?
A2: This application originally used LZMA compression, which works great, but is unfortunately unsupported by C-Engine. It appears the current compression method, the default zip compression method of deflation, is the only functioning method of compressing .pak files.

Roadmap

This is a loose outline of what is in the future for the DL2 PAKFile Utility!

  • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
  • Ability to Extract PAKFiles into a Folder to Edit
  • Ability to Build a PAKFile from a Folder
  • Search PAKFiles for Specific Contents
  • GUI Integration
  • Intelligently Browse DL2 PAKFile Folder Contents (MOD MANAGER FUNCTIONALITY)
  • Detailed Documentation for both the Application and for Modding DL2
  • Auto-Updating Feature for the Utility that Pulls from GitHub
  • More Modding Tools Built-In

More to be Announced Soon!

You might also like...
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

CondenseNet: Light weighted CNN for mobile devices
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

A light-weight image labelling tool for Python designed for creating segmentation data sets.
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

Official code of
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

PyTorch Implementation of
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Releases(v0.4.6)
  • v0.4.6(Feb 11, 2022)

    v0.4.6 | General Improvements

    This release is just an update to fix some crashing issues (now gives detailed error output and won't close / exit the application) and to address the false-flagging by some anti-virus softwares of this application. It should now give 0 flags on an anti-virus, and should feel a lot smoother in terms of user experience. Also addressed was a minor formatting but when the rebuild feature has been enabled with errors giving a limit of 1-4 when the limit is 1-6 for the main menu selection integer.

    Known Issues

    There are no known issues within this release.

    Upcoming

    Full cross-platform support is planned, and the GUI is a work-in-progress! Big things are coming to this utility soon. Plans for a fully-functional and fully-featured mod loader / manager are in the works.

    Changelog

    This is what is new or different:

    • Better Error and Exception Handling (no more random crashes)
    • Fixed Integer Bounds Formatting
    • Cleanly-Built Pyinstaller Bootloader to Fix False AV Flags
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.29 MB)
  • v0.3.9(Feb 10, 2022)

    v0.3.9 | Hotfix and Improvements

    This is a hotfix. It is intended to fix a bug with built PAKFiles not loading properly into Dying Light 2 / C-Engine. The issue was with LZMA vs Deflation compression methods. Additionally, an option to rebuild the last built .pak has been added for rapid development as you tweak the mods you're making. There won't be much in terms of information in this release, as more work is still being done for future updates. This is simply a hotfix release coupled with a feature request.

    Known Issues

    There is one main issue to be aware of for this release:
    False-Flagging for Antiviruses

    • See this link for an in-depth explanation.
    • TL;DR - a lot of people use pyinstaller, the tool used to freeze the executable, for malicious purposes. Thusly, applications built with the signature of pyinstaller may also be flagged as a virus simply by association of the method used to compile the executable.
    • This will be fixed soon once I've rewritten the pyinstaller bootloader, or possibly switched to nuitka.
    • If the issue annoys you or gives you problems, simply create an antivirus / firewall exception for the app, or build it from source yourself.

    Changelog

    This is what is new or different:

    • Application-Built PAKs Now Work Properly with Dying Light 2 / C-Engine
    • Ability to Rebuild Last PAK from Main Menu
    • Changed Icon Color to Neon Cyan for Visibility (Contrast to Dying Light 2 Game Icon)
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.29 MB)
  • v0.0.1(Feb 9, 2022)

    v0.0.1 | Initial Release

    This is an initial release. It is being released as a "beta" because it's more in a beta state and not in an ideal "release" state currently.
    By no means is it complete and / or finished. It is still lacking in a lot of ways that I wish to improve upon in the near future (see the roadmap).
    Make sure to read the instructions on how to run it before getting upset that it's "immediately closing".
    There are bound to be some bugs and errors, and I implore you to report them in this repository's issue tracker.

    Features

    With all of that being said, here is what you can expect to be working as of this release:

    • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
    • Ability to Extract PAKFiles into a Folder to Edit
    • Ability to Build a PAKFile from a Folder
    • Incredibly Efficient Mod Builder with 79% (21% of Original Size) LZMA Compression on the size of the mods!
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.55 MB)
Owner
RHQ Online
RHQ Online.
RHQ Online
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Amazing-Python-Scripts - πŸš€ Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

πŸ“‘ Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
pytorch implementation of fast-neural-style

fast-neural-style πŸŒ‡ πŸš€ NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg SΓ©mery 6 Dec 05, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022