A light-weight image labelling tool for Python designed for creating segmentation data sets.

Overview

django-labeller

A light-weight image labelling tool for Python designed for creating segmentation data sets.

  • compatible with Django, Flask and Qt
  • polygon, box, point and oriented ellipse annotations supported
  • polygonal labels can have disjoint regions and can be editing using paintng and boolean operations; provided by polybooljs
  • can use the DEXTR algorithm to automatically generate polygonal outlines of objects identified by the user with a few clicks; provided by the dextr library
New in v0.3: schema editor for editing label classes
Django Labeller in action:

Django labeller movie


Schema editor (new in v0.3):

Django labeller movie


Django, Flask or Qt?

If you want to run django-labeller on your local machine with minimum fuss and store the image and label files on your file system, use either the Flask application or the Qt application.

If you want to incorporate django-labeller into your Django application, use the Django app/plugin as it provides model classes that store labels in your database, etc.

Installation

If you to use the example Django application or use the provided example images, clone it from GitHub and install (recommended):

> git clone https://github.com/Britefury/django-labeller.git
> python setup.py install

To use it as a library, either with Flask or Django, install from PyPI:

> pip install django-labeller

Note:

  • pip install django-labeller[django] will also install the Django dependency
  • pip install django-labeller[dextr] will also install the dextr library

Examples

Flask web app example, running on your local machine

An example Flask-based web app is provided that displays the labelling tool within a web page. To start it, change into the same directory into which you cloned the repo and run:

> python -m image_labelling_tool.flask_labeller 

Now open 127.0.0.1:5000 within a browser.

If you want to load images from a different directory, or if you installed from PyPI, tell flask_labeller where to look:

> python -m image_labelling_tool.flask_labeller --images_pat=<images_directory>/*.<jpg|png>

Flask app with DEXTR assisted labelling

First, install the dextr library:

> pip install dextr

Now tell the Flask app to enable DEXTR using the --enable_dextr option:

> python -m image_labelling_tool.flask_labeller --enable_dextr

The above will use the ResNet-101 based DEXTR model trained on Pascal VOC 2012 that is provided by the dextr library. If you want to use a custom DEXTR model that you trained for your purposes, use the --dextr_weights option:

> python -m image_labelling_tool.flask_labeller --dextr_weights=path/to/model.pth

Qt desktop application

Requirements

PyQt5 and flask need to be installed, both of which can be installed using conda if using an Anaconda distribution.
Optionally install PyTorch and the dextr library if you want to use a DEXTR model for automatically assisted annotation.

Running

A simple Qt-based desktop application allows you to choose a directory of images to label. To start it, change into the same directory into which you cloned the repo and run:

> python -m image_labelling_tool_qt.simple_labeller 

A dialog will appear prompting you to choose a directory of images to label. The Enable DEXTR checkbox will enable DEXTR assisted automated labelling. Note that this requires that PyTorch and the dextr library are both installed in your Python environment.

The Qt desktop application uses QWebEngine to show the web-based component in a Qt UI. A Flask server is started in the background that serves the tool HTML, static files and images.

Django web app example

The example Django-based web app provides a little more functionality than the Flask app. It stores the label data in a database (only SQLite in the example) and does basic image locking so that multiple users cannot work on the same image at the same time.

To initialise, first perform migrations:

> python simple_django_labeller/manage.py migrate

Now you need to import a labelling schema. Labelling schemes are stored as JSON files. For now, there is a special one called demo that you can use. Load it into a schema named default:

> python simple_django_labeller/manage.py import_schema default demo

Then populate the database with the example images in the images directory (replace images with the path of another directory if you wish to use different images):

> python simple_django_labeller/manage.py populate images

Then run the app:

> python simple_django_labeller/manage.py runserver

Django app with DEXTR assisted labelling

First, install the dextr library and celery:

> pip install dextr
> pip install celery

Now install RabbitMQ, using the appropriate approach for your platform (you could use a different Celery backend if you don't mind editing settings.py as needed).

Enable DEXTR within tests/example_labeller_app/settings.py; change the line

LABELLING_TOOL_DEXTR_AVAILABLE = False

so that LABELLING_TOOL_DEXTR_AVAILABLE is set to True.

You can also change the LABELLING_TOOL_DEXTR_WEIGHTS_PATH option to a path to a custom model, otherwise the default ResNet-101 based U-net trained on Pascal VOC 2012 provided by the dextr library will be used.

Now run the Django application:

> cd simple_django_labeller
> python manage.py runserver

Now start a celery worker:

> cd simple_django_labeller
> celery -A example_labeller_app worker -l info

Note that Celery v4 and above are not strictly compatible with Windows, but it can work if you run:

> celery -A example_labeller_app worker --pool=solo -l info

API and label access

Please see the Jupyter notebook Image labeller notebook.ipynb for API usage. It will show you how to load labels and render them into class maps, instance maps, or image stacks.

Changes

Please see the change log for recent changes.

Libraries, Credits and License

Incorporates the public domain json2.js library. Uses d3.js, jQuery, popper.js, PolyK, polybooljs, Bootstrap 4, Vue.js v3 and spectrum.js.

This software was developed by Geoffrey French in collaboration with Dr. M. Fisher and Dr. M. Mackiewicz at the School of Computing Sciences at the University of East Anglia as part of a project funded by Marine Scotland.

It is licensed under the MIT license.

CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon PatiƱo 24 Oct 22, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022