Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

Overview

SAFA: Structure Aware Face Animation (3DV2021)

Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

Screenshot Screenshot Screenshot Screenshot

Screenshot

Getting Started

git clone https://github.com/Qiulin-W/SAFA.git

Installation

Python 3.6 or higher is recommended.

1. Install PyTorch3D

Follow the guidance from: https://github.com/facebookresearch/pytorch3d/blob/master/INSTALL.md.

2. Install Other Dependencies

To install other dependencies run:

pip install -r requirements.txt

Usage

1. Preparation

a. Download FLAME model, choose FLAME 2020 and unzip it, put generic_model.pkl under ./modules/data.

b. Download head_template.obj, landmark_embedding.npy, uv_face_eye_mask.png and uv_face_mask.png from DECA/data, and put them under ./module/data.

c. Download SAFA model checkpoint from Google Drive and put it under ./ckpt.

d. (Optional, required by the face swap demo) Download the pretrained face parser from face-parsing.PyTorch and put it under ./face_parsing/cp.

2. Demos

We provide demos for animation and face swap.

a. Animation demo

python animation_demo.py --config config/end2end.yaml --checkpoint path/to/checkpoint --source_image_pth path/to/source_image --driving_video_pth path/to/driving_video --relative --adapt_scale --find_best_frame

b. Face swap demo We adopt face-parsing.PyTorch for indicating the face regions in both the source and driving images.

For preprocessed source images and driving videos, run:

python face_swap_demo.py --config config/end2end.yaml --checkpoint path/to/checkpoint --source_image_pth path/to/source_image --driving_video_pth path/to/driving_video

For arbitrary images and videos, we use a face detector to detect and swap the corresponding face parts. Cropped images will be resized to 256*256 in order to fit to our model.

python face_swap_demo.py --config config/end2end.yaml --checkpoint path/to/checkpoint --source_image_pth path/to/source_image --driving_video_pth path/to/driving_video --use_detection

Training

We modify the distributed traininig framework used in that of the First Order Motion Model. Instead of using torch.nn.DataParallel (DP), we adopt torch.distributed.DistributedDataParallel (DDP) for faster training and more balanced GPU memory load. The training procedure is divided into two steps: (1) Pretrain the 3DMM estimator, (2) End-to-end Training.

3DMM Estimator Pre-training

CUDA_VISIBLE_DEVICES="0,1,2,3" python -m torch.distributed.launch --nproc_per_node 4 run_ddp.py --config config/pretrain.yaml

End-to-end Training

CUDA_VISIBLE_DEVICES="0,1,2,3" python -m torch.distributed.launch --nproc_per_node 4 run_ddp.py --config config/end2end.yaml --tdmm_checkpoint path/to/tdmm_checkpoint_pth

Evaluation / Inference

Video Reconstrucion

python run_ddp.py --config config/end2end.yaml --checkpoint path/to/checkpoint --mode reconstruction

Image Animation

python run_ddp.py --config config/end2end.yaml --checkpoint path/to/checkpoint --mode animation

3D Face Reconstruction

python tdmm_inference.py --data_dir directory/to/images --tdmm_checkpoint path/to/tdmm_checkpoint_pth

Dataset and Preprocessing

We use VoxCeleb1 to train and evaluate our model. Original Youtube videos are downloaded, cropped and splited following the instructions from video-preprocessing.

a. To obtain the facial landmark meta data from the preprocessed videos, run:

python video_ldmk_meta.py --video_dir directory/to/preprocessed_videos out_dir directory/to/output_meta_files

b. (Optional) Extract images from videos for 3DMM pretraining:

python extract_imgs.py

Citation

If you find our work useful to your research, please consider citing:

@article{wang2021safa,
  title={SAFA: Structure Aware Face Animation},
  author={Wang, Qiulin and Zhang, Lu and Li, Bo},
  journal={arXiv preprint arXiv:2111.04928},
  year={2021}
}

License

Please refer to the LICENSE file.

Acknowledgement

Here we provide the list of external sources that we use or adapt from:

  1. Codes are heavily borrowed from First Order Motion Model, LICENSE.
  2. Some codes are also borrowed from: a. FLAME_PyTorch, LICENSE b. generative-inpainting-pytorch, LICENSE c. face-parsing.PyTorch, LICENSE d. video-preprocessing.
  3. We adopt FLAME model resources from: a. DECA, LICENSE b. FLAME, LICENSE
  4. External Libaraies: a. PyTorch3D, LICENSE b. face-alignment, LICENSE
Owner
QiulinW
MSc at Imperial College London, now working at JD Technology.
QiulinW
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022