Official repository for Natural Image Matting via Guided Contextual Attention

Overview

GCA-Matting: Natural Image Matting via Guided Contextual Attention

The source codes and models of Natural Image Matting via Guided Contextual Attention which will appear in AAAI-20.

Matting results on test data from alphamatting.com with trimap-user.

Requirements

Packages:

  • torch >= 1.1
  • tensorboardX
  • numpy
  • opencv-python
  • toml
  • easydict
  • pprint

GPU memory >= 8GB for inference on Adobe Composition-1K testing set

Models

The models pretrained on Adobe Image Matting Dataset are covered by Adobe Deep Image Mattng Dataset License Agreement and can only be used and distributed for noncommercial purposes.

Model Name Training Data File Size MSE SAD Grad Conn
ResNet34_En_nomixup ISLVRC 2012 166 MB N/A N/A N/A N/A
gca-dist Adobe Matting Dataset 96.5 MB 0.0091 35.28 16.92 32.53
gca-dist-all-data Adobe Matting Dataset
+ Composition-1K
96.5 MB - - - -
  • ResNet34_En_nomixup: Model of the customized ResNet-34 backbone trained on ImageNet. Save to ./pretrain/. The training codes of ResNet34_En_nomixup and more variants will be released as an independent repository later. You need this checkpoint only if you want to train your own matting model.
  • gca-dist: Model of the GCA Matting in Table 2 in the paper. Save to ./checkpoints/gca-dist/.
  • gca-dist-all-data: Model of the GCA Matting trained on both Adobe Image Matting Dataset and the Composition-1K testing set for alphamatting.com online benchmark. Save to ./checkpoints/gca-dist-all-data/.

(We removed optimizer state_dict from gca-dist.pth and gca-dist-all-data.pth to save space. So you cannot resume the training from these two models.)

Run a Demo on alphamatting.com Testing Set

python demo.py \
--config=config/gca-dist-all-data.toml \
--checkpoint=checkpoints/gca-dist-all-data/gca-dist-all-data.pth \
--image-dir=demo/input_lowres \
--trimap-dir=demo/trimap_lowres/Trimap3 \
--output=demo/pred/Trimap3/

This will load the configuration from config and save predictions in output/config_checkpoint/*. You can reproduce our alphamatting.com submission by this command.

Train and Evaluate on Adobe Image Matting Dataset

Data Preparation

Since each ground truth alpha image in Composition-1K is shared by 20 merged images, we first copy and rename these alpha images to have the same name as their trimaps. If your ground truth images are in ./Combined_Dataset/Test_set/Adobe-licensed images/alpha, run following command:

./copy_testing_alpha.sh Combined_Dataset/Test_set/Adobe-licensed\ images

New alpha images will be generated in Combined_Dataset/Test_set/Adobe-licensed images/alpha_copy

Configuration

TOML files are used as configurations in ./config/. You can find the definition and options in ./utils/config.py.

Training

Default training requires 4 GPUs with 11GB memory, and the batch size is 10 for each GPU. First, you need to set your training and validation data path in configuration and dataloader will merge training images on-the-fly:

[data]
train_fg = ""
train_alpha = ""
train_bg = ""
test_merged = ""
test_alpha = ""
test_trimap = ""

You can train the model by

./train.sh

or

OMP_NUM_THREADS=2 python -m torch.distributed.launch \
--nproc_per_node=4 main.py \
--config=config/gca-dist.toml

For single GPU training, set dist=false in your *.toml and run

python main.py --config=config/*.toml

Evaluation

To evaluate our model or your own model on Composition-1K, set the path of Composition-1K testing and model name in the configuration file *.toml:

[test]
merged = "./data/test/merged"
alpha = "./data/test/alpha_copy"
trimap = "./data/test/trimap"
# this will load ./checkpoint/*/gca-dist.pth
checkpoint = "gca-dist" 

and run the command:

./test.sh

or

python main.py \
--config=config/gca-dist.toml \
--phase=test

The predictions will be save to** ./prediction by default, and you can evaluate the results by the MATLAB file ./DIM_evaluation_code/evaluate.m in which the evaluate functions are provided by Deep Image Matting. Please do not report the quantitative results calculated by our python code like ./utils/evaluate.py or this test.sh in your paper or project. The Grad and Conn functions of our reimplementation are not exactly the same as MATLAB version.

Citation

If you find this work or code useful for your research, please cite:

@inproceedings{li2020natural,
  title={Natural image matting via guided contextual attention},
  author={Li, Yaoyi and Lu, Hongtao},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={34},
  pages={11450--11457},
  year={2020}
}
Owner
Li Yaoyi
Li Yaoyi
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023