MoCap-Solver: A Neural Solver for Optical Motion Capture Data

Overview

1. Description

This depository contains the sourcecode of MoCap-Solver and the baseline method [Holden 2018].

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions. It is based on our work published in SIGGRAPH 2021:

MoCap-Solver: A Neural Solver for Optical Motion Capture Data.

To configurate this project, run the following commands in Anaconda:

conda create -n MoCapSolver pip python=3.6
conda activate MoCapSolver
conda install cudatoolkit=10.1.243
conda install cudnn=7.6.5
conda install numpy=1.17.0
conda install matplotlib=3.1.3
conda install json5=0.9.1
conda install pyquaternion=0.9.9
conda install h5py=2.10.0
conda install tqdm=4.56.0
conda install tensorflow-gpu==1.13.1
conda install keras==2.2.5
conda install chumpy==0.70
conda install opencv-python==4.5.3.56
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
conda install tensorboard==1.15.1

2. Generate synthetic dataset

Download the project SMPLPYTORCH with SMPL models downloaded and configurated and put the subfolder "smplpytorch" into the folder "external".

Put the CMU mocap dataset from AMASS dataset into the folder

external/CMU

and download the 'smpl_data.npz' from the project SURREAL and put it into "external".

Finally, run the following scripts to generate training dataset and testing dataset.

python generate_dataset.py

We use a SEED to randomly select train dataset and test dataset and randomly generate noises. You can set the number of SEED to generate different datasets.

If you need to generate the training data of your own mocap data sequence, we need three kinds of data for each mocap data sequence: raw data, clean data and the bind pose. For each sequence, we should prepare these three kinds of data.

  • The raw data: the animations of raw markers that are captured by the optical mocap devices.
  • The clean data: The corresponding ground-truth skinned mesh animations containing clean markers and skeleton animation. The skeletons of each mocap sequences must be homogenious, that is to say, the numbers of skeletons and the hierarchy must be consistent. The clean markers is skinned on the skeletons. The skinning weights of each mocap sequence must be consistent.
  • The bind pose: The bind pose contains the positions of skeletons and the corresponding clean markers, as the Section 3 illustrated.
M: the marker global positions of cleaned mocap sequence. N * 56 * 3
M1: the marker global positions of raw mocap sequence. N * 56 * 3
J_R: The global rotation matrix of each joints of mocap sequence. N *  24 * 3 * 3
J_t: The joint global positions of mocap sequence. N * 24 * 3
J: The joint positions of T-pose. 24 * 3
Marker_config: The marker configuration of the bind-pose, meaning the local position of each marker with respect to the local frame of each joints. 56 * 24 * 3

The order of the markers and skeletons we process in our algorithm is as follows:

Marker_order = {
            "ARIEL": 0, "C7": 1, "CLAV": 2, "L4": 3, "LANK": 4, "LBHD": 5, "LBSH": 6, "LBWT": 7, "LELB": 8, "LFHD": 9,
            "LFSH": 10, "LFWT": 11, "LHEL": 12, "LHIP": 13,
            "LIEL": 14, "LIHAND": 15, "LIWR": 16, "LKNE": 17, "LKNI": 18, "LMT1": 19, "LMT5": 20, "LMWT": 21,
            "LOHAND": 22, "LOWR": 23, "LSHN": 24, "LTOE": 25, "LTSH": 26,
            "LUPA": 27, "LWRE": 28, "RANK": 29, "RBHD": 30, "RBSH": 31, "RBWT": 32, "RELB": 33, "RFHD": 34, "RFSH": 35,
            "RFWT": 36, "RHEL": 37, "RHIP": 38, "RIEL": 39, "RIHAND": 40,
            "RIWR": 41, "RKNE": 42, "RKNI": 43, "RMT1": 44, "RMT5": 45, "RMWT": 46, "ROHAND": 47, "ROWR": 48,
            "RSHN": 49, "RTOE": 50, "RTSH": 51, "RUPA": 52, "RWRE": 53, "STRN": 54, "T10": 55} // The order of markers

Skeleton_order = {"Pelvis": 0, "L_Hip": 1, "L_Knee": 2, "L_Ankle": 3, "L_Foot": 4, "R_Hip": 5, "R_Knee": 6, "R_Ankle": 7,
            "R_Foot": 8, "Spine1": 9, "Spine2": 10, "Spine3": 11, "L_Collar": 12, "L_Shoulder": 13, "L_Elbow": 14,
            "L_Wrist": 15, "L_Hand": 16, "Neck": 17, "Head": 18, "R_Collar": 19, "R_Shoulder": 20, "R_Elbow": 21,
            "R_Wrist": 22, "R_Hand": 23}// The order of skeletons.

3. Train and evaluate

3.1 MoCap-Solver

We can train and evaluate MoCap-Solver by running this script.

python train_and_evaluate_MoCap_Solver.py

3.2 Train and evaluate [Holden 2018]

We also provide our implement version of [Holden 2018], which is the baseline of mocap data solving.

Once prepared mocap dataset, we can train and evaluate the model [Holden 2018] by running the following script:

python train_and_evaluate_Holden2018.py

3.3 Pre-trained models

We set the SEED number to 100, 200, 300, 400 respectively, and generated four different datasets. We trained MoCap-Solver and [Holden 2018] on these four datasets and evaluated the errors on the test dataset, the evaluation result is showed on the table.

The pretrained models can be downloaded from Google Drive. To evaluate the pretrained models, you need to copy all the files in one of the seed folder (need to be consistent with the SEED parameter) into models/, and run the evaluation script:

python evaluate_MoCap_Solver.py

In our original implementation of MoCap-Solver and [Holden 2018] in our paper, markers and skeletons were normalized using the average bone length of the dataset. However, it is problematic when deploying this algorithm to the production environment, since the groundtruth skeletons of test data were actually unknown information. So in our released version, such normalization is removed and the evaluation error is slightly higher than our original implementation since the task has become more complex.

4. Typos

The loss function (3-4) of our paper: The first term of this function (i.e. alpha_1*D(Y, X)), X denotes the groundtruth clean markers and Y the predicted clean markers.

5. Citation

If you use this code for your research, please cite our paper:

@article{kang2021mocapsolver,
  author = {Chen, Kang and Wang, Yupan and Zhang, Song-Hai and Xu, Sen-Zhe and Zhang, Weidong and Hu, Shi-Min},
  title = {MoCap-Solver: A Neural Solver for Optical Motion Capture Data},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {40},
  number = {4},
  pages = {84},
  year = {2021},
  publisher = {ACM}
}
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Deep learning image registration library for PyTorch

TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide

Bob de Vos 40 Dec 16, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
gitγ€ŠBeta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021