Hooks for VCOCO

Related tags

Deep Learningv-coco
Overview

Verbs in COCO (V-COCO) Dataset

This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic Role Labeling (VSRL) task as ddescribed in this technical report.

Citing

If you find this dataset or code base useful in your research, please consider citing the following papers:

@article{gupta2015visual,
  title={Visual Semantic Role Labeling},
  author={Gupta, Saurabh and Malik, Jitendra},
  journal={arXiv preprint arXiv:1505.04474},
  year={2015}
}

@incollection{lin2014microsoft,
  title={Microsoft COCO: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={Computer Vision--ECCV 2014},
  pages={740--755},
  year={2014},
  publisher={Springer}
}

Installation

  1. Clone repository (recursively, so as to include COCO API).

    git clone --recursive https://github.com/s-gupta/v-coco.git
  2. This dataset builds off MS COCO, please download MS-COCO images and annotations.

  3. Current V-COCO release only uses a subset of MS-COCO images (Image IDs listed in data/splits/vcoco_all.ids). Use the following script to pick out annotations from the COCO annotations to allow faster loading in V-COCO.

    # Assume you cloned the repository to `VCOCO_DIR'
    cd $VCOCO_DIR
    # If you downloaded coco annotations to coco-data/annotations
    python script_pick_annotations.py coco-data/annotations
  4. Build coco/PythonAPI/pycocotools/_mask.so, cython_bbox.so.

    # Assume you cloned the repository to `VCOCO_DIR'
    cd $VCOCO_DIR/coco/PythonAPI/ && make
    cd $VCOCO_DIR && make

Using the dataset

  1. An IPython notebook, illustrating how to use the annotations in the dataset is available in V-COCO.ipynb
  2. The current release of the dataset includes annotations as indicated in Table 1 in the paper. We are collecting role annotations for the 6 categories (that are missing) and will make them public shortly.

Evaluation

We provide evaluation code that computes agent AP and role AP, as explained in the paper.

In order to use the evaluation code, store your predictions as a pickle file (.pkl) in the following format:

[ {'image_id':        # the coco image id,
   'person_box':      #[x1, y1, x2, y2] the box prediction for the person,
   '[action]_agent':  # the score for action corresponding to the person prediction,
   '[action]_[role]': # [x1, y1, x2, y2, s], the predicted box for role and 
                      # associated score for the action-role pair.
   } ]

Assuming your detections are stored in det_file=/path/to/detections/detections.pkl, do

from vsrl_eval import VCOCOeval
vcocoeval = VCOCOeval(vsrl_annot_file, coco_file, split_file)
  # e.g. vsrl_annot_file: data/vcoco/vcoco_val.json
  #      coco_file:       data/instances_vcoco_all_2014.json
  #      split_file:      data/splits/vcoco_val.ids
vcocoeval._do_eval(det_file, ovr_thresh=0.5)

We introduce two scenarios for role AP evaluation.

  1. [Scenario 1] In this scenario, for the test cases with missing role annotations an agent role prediction is correct if the action is correct & the overlap between the person boxes is >0.5 & the corresponding role is empty e.g. [0,0,0,0] or [NaN,NaN,NaN,NaN]. This scenario is fit for missing roles due to occlusion.

  2. [Scenario 2] In this scenario, for the test cases with missing role annotations an agent role prediction is correct if the action is correct & the overlap between the person boxes is >0.5 (the corresponding role is ignored). This scenario is fit for the cases with roles outside the COCO categories.

Owner
Saurabh Gupta
Saurabh Gupta
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022