This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Overview

Description

This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et al., 2019].

The user provides a time series as input. The algorithm will perform the following steps:

  • Transform the timeseries into an image
  • Convolve this image

The user can then apply filters, like a low-pass filter, to isolate low density events, such as IEDs.

Please, open main.py and change the path inside to use the program.

Procedure example (main.py)

### Init parameters (root is the path to the folder you have downloaded)
root = r"~/CKDE"
event_num = 5

### Get a timeseries filepath (look in the folder you have downloaded)
timeseries_folderpath =  os.path.join(root, "test_events_database\events_signal_data")
timeserie_filename = f"event_{event_num}.txt"

### Load a timeseries from the sample data provided with this program (1D)
signal = load_timeseries(timeseries_folderpath, timeserie_filename) # or,
#signal = random_signal_simulation()

### Get the timeseries info
json_dict = json.load(open(os.path.join(root,"test_events_database\events_info.json")))
sfreq = json_dict["events_info"][event_num]["sampling_frequency"]

### Convert it to a 2D signal
image_2D = from_1D_to_2D(signal, bandwidth = 1)

### Convolve the 2D signal
image_2D_convolved = convolve_2D_image(image_2D, convolution = "gaussian custom")

### Plot result
fig_name = "Epileptic spike (signal duration: 400 ms) \n\n[1] raw [2] imaged [3] convoluted"
pot_result(signal, image_2D, image_2D_convolved, fig_name)

Some information about the dataset

We propose some simulated data to validate our procedure with a known frequency, duration and position. This database is structured as shown in figure 1. User can either use these data, use his own, or simulate some. A signal simulation function is also provided in the program.

Methods

Figure 2 shows how the convolved image (2D) is drawn from the raw signal (1D). A: Convolution process. B: Full process.

Results

Figure 3 shows the result of the full process. The timeseries used as input is an IED called "event_5" in the data sample we provide with this program.

References

Gardy, L., Barbeau, E., and Hurter, C. (2020). Automatic detection of epileptic spikes in intracerebral eeg with convolutional kernel density estimation. In 4th International Conference on Human Computer Interaction Theory and Applications, pages 101–109. SCITEPRESS-Science and Technology Publications. https://doi.org/10.5220/0008877601010109

Dependencies

  • sklearn==0.22.2.post1
  • astropy==4.0.1
  • scipy==1.4.1
Owner
Ludovic Gardy
Ludovic Gardy
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022