통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Related tags

Deep LearningLucas
Overview


Lucas

Hits


coded by linux shell

목차


Patch Note 📜


Team member

Contributors/People

ympark gbhwang cbchun
https://github.com/pym7857 https://github.com/gbhwang https://github.com/bermmie1000
  • You can see team member and github profile
  • You should probably find team member's lastest project



Requirements

  • python 3.xx



Mac버전 CookieCutter (autoenv)

🚫 주의
$> brew install autoenv 로 다운로드 받아서 실행시키면 터미널 고장납니다.
반드시 autoenv Github 에서 git clone 으로 다운받아 주세요. (현재 시점 21.3.24)

⚠️ mac버전만 소개합니다.

1. How to Install autoenv

$ git clone git://github.com/inishchith/autoenv.git ~/.autoenv

2.폴더 진입 시, activate 구현하기

$ echo 'source ~/.autoenv/activate.sh' >> ~/.zshrc
$ source ~/.zshrc

🔔 하단의.env파일은 현재 repo의 cookiecutter에서 자동으로 생성해줍니다. (스킵)

# .env 파일
echo "HELLO autoenv"
{
    source .dev-venv/bin/activate
    echo "virtual env is successfully activated!"
} ||
{
    echo "[virtual env start] is failed!"
}

.env파일 설정 후 첫 폴더 진입시 .env파일을 신뢰하고 실행할지 않을 지에 대한 동의가 나타납니다. autoenv 이 부분은 .env파일이 악의적으로 변경되었을때 사용자에게 알리기 위해서 있기 때문에 즐거운 마음으로 Y를 눌러줍시다.
이제 정상적으로 가상환경이 activate된 것을 확인할 수 있습니다.

3.폴더 탈출 시, deactivate 구현하기

$> vi ~/.zshrc

마지막줄에 다음의 명령어를 추가해줍니다.

export AUTOENV_ENABLE_LEAVE='"enabled"' 

🔔 하단의.env.leave파일은 현재 repo의 cookiecutter에서 자동으로 생성해줍니다. (스킵)

# .env.leave 파일
echo "BYEBYE"
{
    deactivate
    echo "virtual env is successfully deactivated!"
} ||
{
    echo "[virtual env quit] is failed!"
}

.env.leave파일 설정 후 해당 폴더에서 나가면
정상적으로 가상환경이 deactivate 되는 것을 확인할 수 있습니다.

4.Alias 설정하기

echo 'alias cookie="bash [각자 컴퓨터의 상대경로/cookie_cutter_project_dir.sh]"' >> ~/.zshrc
ex) echo 'alias cookie="bash /Users/gbhwang/Desktop/Project/Test/Lucas/mac/cookie_cutter_project_dir.sh"' >> ~/.zshrc

맥 파일경로 확인법을 참고하여
각자 mac폴더안의 cookie_cutter_project_dir.sh 파일의 경로를 확인하여 zshrc에 넣어주시면 됩니다.

이렇게 하면 cookie 명령어 만으로 간단하게 스크립트를 실행시킬 수 있게 됩니다.
위와 같이 설정하면 cookie [프로젝트 생성할 경로] [프로젝트 이름] 명령어로 프로젝트를 생성할 수 있게 됩니다.

5.How to Use

$> cd "where-you-want"
$> git clone https://github.com/LS-ELLO/Lucas.git
$> cd Lucas
$> cd mac

$> cookie [where-you-want] [your-project-name]
ex) $> cookie . test111



Windows버전 CookieCutter (ps-autoenv)

도움 주신 규본님 감사합니다.
ps-autoenv를 사용합니다.

1.How to install ps-autoenv

Powershell 실행 (관리자 권한 실행)

PS> Install-Module ps-autoenv
PS> Add-Content $PROFILE @("`n", "import-module ps-autoenv")

2.Alias 설정하기 (git-bash)

참조

  1. C:/Program Files/Git/etc/profile.d/aliases.sh 파일을 관리자 권한으로 Text Editor에 실행시킵니다.

  2. 다음의 명령어를 추가합니다.
    alias cookie='bash cookie_cutter_project_dir.sh의 상대경로'
    ex) alias cookie='bash D:/Lucas/windows/cookie_cutter_project_dir.sh'

    (aliases.sh)

    # Some good standards, which are not used if the user
    # creates his/her own .bashrc/.bash_profile
    
    # --show-control-chars: help showing Korean or accented characters
    alias ls='ls -F --color=auto --show-control-chars'
    alias ll='ls -l'
    alias cookie='bash [where-your-cookie_cutter_project_dir.sh]'
    
    case "$TERM" in
    ...

3.How to Use

Git Bash 실행

bash> cd "where-this-repo-downloaded"
bash> cd windows
bash> cookie [where-you-want] [your-project-name]
ex) cookie . 1bot

Powershell 실행

PS> Import-Module ps-autoenv
PS> cd "where-your-cookiecutter-project"
ex. PS> cd "C:\Users\ympark4\Documents\1bot"
PS> press 'Y'
🚫 PSSecurityException 오류 발생할때

https://extbrain.tistory.com/118 를 참조해서 해결주세요.



The resulting directory structure

The directory structure of your new project looks like this:

├── LICENSE
├── Makefile
├── README.md          ← The top-level README for developers using this project.
├── data
│   ├── external       ← Data from third party sources.
│   ├── interim        ← Intermediate data that has been transformed.
│   ├── processed      ← The final, canonical data sets for modeling.
│   └── raw            ← The original, immutable data dump.
├── docs               ← A default Sphinx project; see sphinx-doc.org for details
├── models             ← Trained and serialized models, model predictions, or model summaries
├── notebooks          ← Jupyter notebooks. Naming convention is a number (for ordering), the creator's initials, and a short `-` delimited description, e.g. `1.0-jqp-initial-data-exploration`.
├── references         ← Data dictionaries, manuals, and all other explanatory materials.
├── reports            ← Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        ← Generated graphics and figures to be used in reporting
├── requirements.txt   ← The requirements file for reproducing the analysis environment, e.g. generated with `pip freeze > requirements.txt`
├── setup.py           ← makes project pip installable (pip install -e .) so src can be imported
├── src                ← Source code for use in this project.
│   ├── __init__.py  
│   ├── dataread      
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── features       
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── models     
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── visualization    
│   │   └── __init__.py
│   │   └── example.py
├── App               
│   ├── android       
│   ├── ios           
│   ├── lib            
│   │   └── models
│   │   └── main.dart
│
└── .gitignore        



Owner
ello
ello
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022