Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Overview

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

diagram

This is the official PyTorch implementation of the SeCo paper:

@article{manas2021seasonal,
  title={Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data},
  author={Ma{\~n}as, Oscar and Lacoste, Alexandre and Giro-i-Nieto, Xavier and Vazquez, David and Rodriguez, Pau},
  journal={arXiv preprint arXiv:2103.16607},
  year={2021}
}

Preparation

Install Python dependencies by running:

pip install -r requirements.txt

Data Collection

First, obtain Earth Engine authentication credentials by following the installation instructions.

Then, to collect and download a new SeCo dataset from a random set of Earth locations, run:

python datasets/seco_downloader.py \
  --save_path [folder where data will be downloaded] \
  --num_locations 200000

Unsupervised Pre-training

To do unsupervised pre-training of a ResNet-18 model on the SeCo dataset, run:

python main_pretrain.py \
  --data_dir datasets/seco_1m --data_mode seco \
  --base_encoder resnet18

Transferring to Downstream Tasks

With a pre-trained SeCo model, to train a supervised linear classifier on 10% of the BigEarthNet training set in a 4-GPU machine, run:

python main_bigearthnet.py \
  --gpus 4 --accelerator dp --batch_size 1024 \
  --data_dir datasets/bigearthnet --train_frac 0.1 \
  --backbone_type pretrain --ckpt_path checkpoints/seco_resnet18_1m.ckpt \
  --freeze_backbone --learning_rate 1e-3

To train a supervised linear classifier on EuroSAT from a pre-trained SeCo model, run:

python main_eurosat.py \
  --data_dir datasets/eurosat \
  --backbone_type pretrain --ckpt_path checkpoints/seco_resnet18_1m.ckpt

To train a supervised change detection model on OSCD from a pre-trained SeCo model, run:

python main_oscd.py \
  --data_dir datasets/oscd \
  --backbone_type pretrain --ckpt_path checkpoints/seco_resnet18_1m.ckpt

Datasets

Our collected SeCo datasets can be downloaded as following:

#images RGB preview size link md5
100K 7.3 GB download ebf2d5e03adc6e657f9a69a20ad863e0
~1M 36.3 GB download 187963d852d4d3ce6637743ec3a4bd9e

Pre-trained Models

Our pre-trained SeCo models can be downloaded as following:

dataset architecture link md5
SeCo-100K ResNet-18 download dcf336be31f6c6b0e77dcb6cc958fca8
SeCo-1M ResNet-18 download 53d5c41d0f479bdfd31d6746ad4126db
SeCo-100K ResNet-50 download 9672c303f6334ef816494c13b9d05753
SeCo-1M ResNet-50 download 7b09c54aed33c0c988b425c54f4ef948
Owner
ElementAI
ElementAI
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022