A library of Recommender Systems

Overview

A library of Recommender Systems

This repository provides a summary of our research on Recommender Systems. It includes our code base on different recommendation topics, a comprehensive reading list and a set of bechmark data sets.

Code Base

Currently, we are interested in sequential recommendation, feature-based recommendation and social recommendation.

Sequential Recommedation

Since users' interests are naturally dynamic, modeling users' sequential behaviors can learn contextual representations of users' current interests and therefore provide more accurate recommendations. In this project, we include some state-of-the-art sequential recommenders that empoly advanced sequence modeling techniques, such as Markov Chains (MCs), Recurrent Neural Networks (RNNs), Temporal Convolutional Neural Networks (TCN) and Self-attentive Neural Networks (Transformer).

Feature-based Recommendation

A general method for recommendation is to predict the click probabilities given users' profiles and items' features, which is known as CTR prediction. For CTR prediction, a core task is to learn (high-order) feature interactions because feature combinations are usually powerful indicators for prediction. However, enumerating all the possible high-order features will exponentially increase the dimension of data, leading to a more serious problem of model overfitting. In this work, we propose to learn low-dimentional representations of combinatorial features with self-attention mechanism, by which feature interactions are automatically implemented. Quantitative results show that our model have good prediction performance as well as satisfactory efficiency.

Social recommendation

Online social communities are an essential part of today's online experience. What we do or what we choose may be explicitly or implicitly influenced by our friends. In this project, we study the social influences in session-based recommendations, which simultaneously model users' dynamic interests and context-dependent social influences. First, we model users' dynamic interests with recurrent neural networks. In order to model context-dependent social influences, we propose to employ attention-based graph convolutional neural networks to differentiate friends' dynamic infuences in different behavior sessions.

Reading List

We maintain a reading list of RecSys papers to keep track of up-to-date research.

Data List

We provide a summary of existing benchmark data sets for evaluating recommendation methods.

New Data

We contribute a new large-scale dataset, which is collected from a popular movie/music/book review website Douban (www.douban.com). The data set could be useful for researches on sequential recommendation, social recommendation and multi-domain recommendation. See details here.

Publications:

Owner
MilaGraph
Research group led by Prof. Jian Tang at Mila-Quebec AI Institute (https://mila.quebec/) focusing on graph representation learning and graph neural networks.
MilaGraph
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
Graph Neural Network based Social Recommendation Model. SIGIR2019.

Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif

PeijieSun 144 Dec 29, 2022
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
Pytorch domain library for recommendation systems

TorchRec (Experimental Release) TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale

Meta Research 1.3k Jan 05, 2023
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023