An Efficient and Effective Framework for Session-based Social Recommendation

Overview

SEFrame

This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation".

Requirements

  • Python 3.8
  • CUDA 10.2
  • PyTorch 1.7.1
  • DGL 0.5.3
  • NumPy 1.19.2
  • Pandas 1.1.3

Usage

  1. Install all the requirements.

  2. Download the datasets:

  3. Create a folder called datasets and extract the raw data files to the folder.
    The folder should include the following files for each dataset:

    • Gowalla: loc-gowalla_totalCheckins.txt and loc-gowalla_edges.txt
    • Delicious: user_taggedbookmarks-timestamps.dat and user_contacts-timestamps.dat
    • Foursquare: dataset_WWW_Checkins_anonymized.txt and dataset_WWW_friendship_new.txt
  4. Preprocess the datasets using the Python script preprocess.py.
    For example, to preprocess the Gowalla dataset, run the following command:

    python preprocess.py --dataset gowalla

    The above command will create a folder datasets/gowalla to store the preprocessed data files.
    Replace gowalla with delicious or foursquare to preprocess other datasets.

    To see the detailed usage of preprocess.py, run the following command:

    python preprocess.py -h
  5. Train and evaluate a model using the Python script run.py.
    For example, to train and evaluate the model NARM on the Gowalla dataset, run the following command:

    python run.py --model NARM --dataset-dir datasets/gowalla

    Other available models are NextItNet, STAMP, SRGNN, SSRM, SNARM, SNextItNet, SSTAMP, SSRGNN, SSSRM, DGRec, and SERec.
    You can also see all the available models in the srs/models folder.

    To see the detailed usage of run.py, run the following command:

    python run.py -h

Dataset Format

You can train the models using your datasets. Each dataset should contain the following files:

  • stats.txt: A TSV file containing three fields, num_users, num_items, and max_len (the maximum length of sessions). The first row is the header and the second row contains the values.

  • train.txt: A TSV file containing all training sessions, where each session has three fileds, namely, sessionId, userId, and items. Both sessionId and userId should be integers. A session with a larger sessionId means that it was generated later (this requirement can be ignored if the used models do not care about the order of sessions, i.e., when the models are not DGRec). The userId should be in the range of [0, num_users). The items field of each session contains the clicked items in the session which is a sequence of item IDs separated by commas. The item IDs should be in the range of [0, num_items).

  • valid.txt and test.txt: TSV files containing all validation and test sessions, respectively. Both files have the same format as train.txt. Note that the session IDs in valid.txt and test.txt should be larger than those in train.txt.

  • edges.txt: A TSV file containing the relations in the social network. It has two columns, follower and followee. Both columns contain the user IDs.

You can see datasets/delicious for an example of the dataset.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{chen2021seframe,
   title="An Efficient and Effective Framework for Session-based Social Recommendation",
   author="Tianwen {Chen} and Raymond Chi-Wing {Wong}",
   booktitle="Proceedings of the Fourteenth ACM International Conference on Web Search and Data Mining (WSDM '21)",
   pages="400--408",
   year="2021"
}
Owner
Tianwen CHEN
A CS PhD Student in HKUST
Tianwen CHEN
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Bundle Graph Convolutional Network

Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun

55 Dec 25, 2022
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Knowledge-aware Coupled Graph Neural Network for Social Recommendation

KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.

xhc 22 Nov 18, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022