PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

Overview

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

This repository contains the implementation of MSBG hearing loss model and MBSTOI intellibility metric in PyTorch. The models are differentiable and can be used as a loss function to train a neural network. Both models follow Python implementation of MSBG and MBSTOI provided by organizers of Clarity Enhancement challenge. Please check the implementation at Clarity challenge repository for more information about the models.

Please note that the differentiable models are approximations of the original models and are intended to be used to train neural networks, not to give exactly the same outputs as the original models.

Requirements and installation

The model uses parts of the functionality of the original MSBG and MBSTOI models. First, download the Clarity challenge repository and set its location as CLARITY_ROOT. To install the necessary requirements:

pip install -r requirements.txt
pushd .
cd $CLARITY_ROOT/projects/MSBG/packages/matlab_mldivide
python setup.py install
popd

Additionally, set paths to the Clarity repository and this repository in path.sh and run the path.sh script before using the provided modules.

. path.sh

Tests and example script

Directory tests contains scipts to test the correspondance of the differentiable modules compared to their original implementation. To run the tests, you need the Clarity data, which can be obtained from the Clarity challenge repository. Please set the paths to the data in the scripts.

MSBG test

The tests of the hearing loss compare the outputs of functions provided by the original implementation and the differentiable version. The output shows the mean differences of the output signals

Test measure_rms, mean difference 9.629646580133766e-09
Test src_to_cochlea_filt forward, mean difference 9.830486283616455e-16
Test src_to_cochlea_filt backward, mean difference 6.900756131702976e-15
Test smear, mean difference 0.00019685214410863303
Test gammatone_filterbank, mean difference 5.49958965492409e-07
Test compute_envelope, mean difference 4.379759604381869e-06
Test recruitment, mean difference 3.1055169855373764e-12
Test cochlea, mean difference 2.5698933453410134e-06
Test hearing_loss, mean difference 2.2326804706160673e-06

MBSTOI test

The test of the intelligbility metric compares the MBSTOI values obtained by the original and differentiable model over the development set of Clarity challenge. The following graph shows the comparison. Correspondance of MBSTOI metrics.

Example script

The script example.py shows how to use the provided module as a loss function for training the neural network. In the script, we use a simple small model and overfit on one example. The descreasing loss function confirms that the provided modules are differentiable.

Loss function with MSBG and MBSTOI loss

Citation

If you use this work, please cite:

@inproceedings{Zmolikova2021BUT,
  author    = {Zmolikova, Katerina and \v{C}ernock\'{y}, Jan "Honza"},
  title     = {{BUT system for the first Clarity enhancement challenge}},
  year      = {2021},
  booktitle = {The Clarity Workshop on Machine Learning Challenges for Hearing Aids (Clarity-2021)},
}
Owner
BUT <a href=[email protected]">
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022