Implementation of several Bayesian multi-target tracking algorithms, including Poisson multi-Bernoulli mixture filters for sets of targets and sets of trajectories. The repository also includes the GOSPA metric and a metric for sets of trajectories to evaluate performance.

Related tags

Deep LearningMTT
Overview
This repository contains the Matlab implementations for the following multi-target filtering/tracking algorithms:

- Folder PMBM contains the implementations of the Poisson multi-Bernoulli mixture (PMBM) filter [1][2], the multi-Bernoulli mixture (MBM) filter [3], and (track-oriented) Poisson multi-Bernoulli (PMB) [1].


In order to run the filters, execute PMBMtarget_filter.m for the PMBM filter MBMtarget_filter.m for the MBM filter

PMBMtarget_filter_tracks_all.m runs the PMBM filter with sequential track formation, linking target states estimates from the same Bernoulli component, which is uniquely identified by a start time and measurement. This information can be made explicit in the posterior via auxiliary variables [4]. Note that Bayesian track formation is obtained via densities on sets of trajectories, not linking target state estimates [5].

- Folder CD MTT filters contains the implementations of the continuous-discrete PMBM, continuous-discrete PHD, and continuous-discrete CPHD filters described in [6].

- Folder TPHD contains the implementations of the trajectory probability hypothesis density (TPHD) filter and the trajectory cardinality PHD (TCPHD) filter for sets of trajectories in [7].

In order to run the filters, execute GM_TPHD_filter.m and GM_TCPHD_filter.m

- Folder TPMBM filter contains the implementations of the trajectory PMBM (TPMBM) filter [8][9], trajectory MBM (TMBM) filter [10], trajectory PMB (TPMB) filter [4] and trajectory MB (TMB) filter [11]. Each of these filters can be run to estimate the set of alive trajectories or the set of all trajectories at each time step (running a different file).

- Folder OOS TPMBM filter contains the implementations of the continuous-discrete TPMBM and continuous-discrete  TPMB filters with out-of-sequence measurements [16].


- Evaluation of the multi-target filters is based on the generalised optimal subpattern-assignment (GOSPA) and its decomposition into localisation errors for properly detected targets, and costs for false and missed targets  [12][13][14].


- Evaluation of multi-target trackers (filters that estimate a set of trajectories) is based on the LP trajectory metric for sets of trajectories and its decomposition into localisation errors for properly detected targets, and costs for false, missed targets, and track switches [15].


- Open access versions of the above papers can be found in https://www.liverpool.ac.uk/electrical-engineering-and-electronics/staff/angel-garcia-fernandez/publications/

- A relevant online course on multiple target tracking is provided here:

https://www.youtube.com/channel/UCa2-fpj6AV8T6JK1uTRuFpw

REFERENCES

[1] J. L. Williams, "Marginal multi-bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member," in IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1664-1687, July 2015.

[2] A. F. García-Fernández, J. L. Williams, K. Granström, and L. Svensson, “Poisson multi-Bernoulli mixture filter: direct derivation and implementation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 4, pp. 1883–1901, Aug. 2018.

[3] A. F. García-Fernández, Y. Xia , K. Granström, L. Svensson, J. L. Williams, "Gaussian implementation of the multi-Bernoulli mixture filter", in Proceedings of the 22nd International conference on Information Fusion, 2019.

[4] Á. F. García-Fernández, L. Svensson, J. L. Williams, Y. Xia and K. Granström, "Trajectory Poisson Multi-Bernoulli Filters," in IEEE Transactions on Signal Processing, vol. 68, pp. 4933-4945, 2020.

[5] Á. F. García-Fernández, L. Svensson and M. R. Morelande, "Multiple Target Tracking Based on Sets of Trajectories," in IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 3, pp. 1685-1707, June 2020.

[6] A. F. García-Fernández, S. Maskell, "Continuous-discrete multiple target filtering: PMBM, PHD and CPHD filter implementations," IEEE Transactions on Signal Processing, vol. 68, pp. 1300-1314, 2020.

[7] A. F. García-Fernández and L. Svensson, “Trajectory PHD and CPHD filters”, IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5702-5714,Nov. 2019.

[8] K. Granström, L. Svensson, Y. Xia, J. Williams and Á. F. García-Fernández, "Poisson Multi-Bernoulli Mixture Trackers: Continuity Through Random Finite Sets of Trajectories," 2018 21st International Conference on Information Fusion (FUSION), Cambridge, 2018.

[9] K. Granström, L. Svensson, Y. Xia, J. Williams and Á. F. García-Fernández, "Poisson Multi-Bernoulli Mixtures for Sets of Trajectories," https://arxiv.org/abs/1912.08718

[10] Y. Xia, K. Granström, L. Svensson, A. F. García-Fernández, and J. L. Wlliams, “Multi-scan implementation of the trajectory Poisson multi-Bernoulli mixture filter,” Journal of Advances in Information Fusion. Special Issue on Multiple Hypothesis Tracking., vol. 14, no. 2, pp. 213–235, Dec. 2019.

[11] A. F. García-Fernández, L. Svensson, J. L. Williams, Y. Xia, K. Granström,  “Trajectory multi-Bernoulli filters for multi-target tracking based on sets of trajectories” in 23rd International Conference on Information Fusion, 2020.

[12] A. S. Rahmathullah, A. F. García-Fernández, and L. Svensson, “Generalized optimal sub-pattern assignment metric,” in 20th International Conference on Information Fusion, 2017.

[13] A. F. García-Fernández, and L. Svensson, "Spooky effect in optimal OSPA estimation and how GOSPA solves it," in 22nd International Conference on Information Fusion, 2019.

[14] L. Svensson, Presentation on GOSPA: https://www.youtube.com/watch?v=M79GTTytvCM

[15] Á. F. García-Fernández, A. S. Rahmathullah and L. Svensson, "A Metric on the Space of Finite Sets of Trajectories for Evaluation of Multi-Target Tracking Algorithms," in IEEE Transactions on Signal Processing, vol. 68, pp. 3917-3928, 2020.

[16] Á. F. García-Fernández and W. Yi, "Continuous-Discrete Multiple Target Tracking With Out-of-Sequence Measurements," in IEEE Transactions on Signal Processing, vol. 69, pp. 4699-4709, 2021






Owner
Ángel García-Fernández
Lecturer, University of Liverpool
Ángel García-Fernández
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022