This repository contains the Matlab implementations for the following multi-target filtering/tracking algorithms: - Folder PMBM contains the implementations of the Poisson multi-Bernoulli mixture (PMBM) filter [1][2], the multi-Bernoulli mixture (MBM) filter [3], and (track-oriented) Poisson multi-Bernoulli (PMB) [1]. In order to run the filters, execute PMBMtarget_filter.m for the PMBM filter MBMtarget_filter.m for the MBM filter PMBMtarget_filter_tracks_all.m runs the PMBM filter with sequential track formation, linking target states estimates from the same Bernoulli component, which is uniquely identified by a start time and measurement. This information can be made explicit in the posterior via auxiliary variables [4]. Note that Bayesian track formation is obtained via densities on sets of trajectories, not linking target state estimates [5]. - Folder CD MTT filters contains the implementations of the continuous-discrete PMBM, continuous-discrete PHD, and continuous-discrete CPHD filters described in [6]. - Folder TPHD contains the implementations of the trajectory probability hypothesis density (TPHD) filter and the trajectory cardinality PHD (TCPHD) filter for sets of trajectories in [7]. In order to run the filters, execute GM_TPHD_filter.m and GM_TCPHD_filter.m - Folder TPMBM filter contains the implementations of the trajectory PMBM (TPMBM) filter [8][9], trajectory MBM (TMBM) filter [10], trajectory PMB (TPMB) filter [4] and trajectory MB (TMB) filter [11]. Each of these filters can be run to estimate the set of alive trajectories or the set of all trajectories at each time step (running a different file). - Folder OOS TPMBM filter contains the implementations of the continuous-discrete TPMBM and continuous-discrete TPMB filters with out-of-sequence measurements [16]. - Evaluation of the multi-target filters is based on the generalised optimal subpattern-assignment (GOSPA) and its decomposition into localisation errors for properly detected targets, and costs for false and missed targets [12][13][14]. - Evaluation of multi-target trackers (filters that estimate a set of trajectories) is based on the LP trajectory metric for sets of trajectories and its decomposition into localisation errors for properly detected targets, and costs for false, missed targets, and track switches [15]. - Open access versions of the above papers can be found in https://www.liverpool.ac.uk/electrical-engineering-and-electronics/staff/angel-garcia-fernandez/publications/ - A relevant online course on multiple target tracking is provided here: https://www.youtube.com/channel/UCa2-fpj6AV8T6JK1uTRuFpw REFERENCES [1] J. L. Williams, "Marginal multi-bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member," in IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1664-1687, July 2015. [2] A. F. García-Fernández, J. L. Williams, K. Granström, and L. Svensson, “Poisson multi-Bernoulli mixture filter: direct derivation and implementation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 4, pp. 1883–1901, Aug. 2018. [3] A. F. García-Fernández, Y. Xia , K. Granström, L. Svensson, J. L. Williams, "Gaussian implementation of the multi-Bernoulli mixture filter", in Proceedings of the 22nd International conference on Information Fusion, 2019. [4] Á. F. García-Fernández, L. Svensson, J. L. Williams, Y. Xia and K. Granström, "Trajectory Poisson Multi-Bernoulli Filters," in IEEE Transactions on Signal Processing, vol. 68, pp. 4933-4945, 2020. [5] Á. F. García-Fernández, L. Svensson and M. R. Morelande, "Multiple Target Tracking Based on Sets of Trajectories," in IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 3, pp. 1685-1707, June 2020. [6] A. F. García-Fernández, S. Maskell, "Continuous-discrete multiple target filtering: PMBM, PHD and CPHD filter implementations," IEEE Transactions on Signal Processing, vol. 68, pp. 1300-1314, 2020. [7] A. F. García-Fernández and L. Svensson, “Trajectory PHD and CPHD filters”, IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5702-5714,Nov. 2019. [8] K. Granström, L. Svensson, Y. Xia, J. Williams and Á. F. García-Fernández, "Poisson Multi-Bernoulli Mixture Trackers: Continuity Through Random Finite Sets of Trajectories," 2018 21st International Conference on Information Fusion (FUSION), Cambridge, 2018. [9] K. Granström, L. Svensson, Y. Xia, J. Williams and Á. F. García-Fernández, "Poisson Multi-Bernoulli Mixtures for Sets of Trajectories," https://arxiv.org/abs/1912.08718 [10] Y. Xia, K. Granström, L. Svensson, A. F. García-Fernández, and J. L. Wlliams, “Multi-scan implementation of the trajectory Poisson multi-Bernoulli mixture filter,” Journal of Advances in Information Fusion. Special Issue on Multiple Hypothesis Tracking., vol. 14, no. 2, pp. 213–235, Dec. 2019. [11] A. F. García-Fernández, L. Svensson, J. L. Williams, Y. Xia, K. Granström, “Trajectory multi-Bernoulli filters for multi-target tracking based on sets of trajectories” in 23rd International Conference on Information Fusion, 2020. [12] A. S. Rahmathullah, A. F. García-Fernández, and L. Svensson, “Generalized optimal sub-pattern assignment metric,” in 20th International Conference on Information Fusion, 2017. [13] A. F. García-Fernández, and L. Svensson, "Spooky effect in optimal OSPA estimation and how GOSPA solves it," in 22nd International Conference on Information Fusion, 2019. [14] L. Svensson, Presentation on GOSPA: https://www.youtube.com/watch?v=M79GTTytvCM [15] Á. F. García-Fernández, A. S. Rahmathullah and L. Svensson, "A Metric on the Space of Finite Sets of Trajectories for Evaluation of Multi-Target Tracking Algorithms," in IEEE Transactions on Signal Processing, vol. 68, pp. 3917-3928, 2020. [16] Á. F. García-Fernández and W. Yi, "Continuous-Discrete Multiple Target Tracking With Out-of-Sequence Measurements," in IEEE Transactions on Signal Processing, vol. 69, pp. 4699-4709, 2021
Implementation of several Bayesian multi-target tracking algorithms, including Poisson multi-Bernoulli mixture filters for sets of targets and sets of trajectories. The repository also includes the GOSPA metric and a metric for sets of trajectories to evaluate performance.
Overview
Data-driven reduced order modeling for nonlinear dynamical systems
SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in
FluidNet re-written with ATen tensor lib
fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,
A dual benchmarking study of visual forgery and visual forensics techniques
A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can
Alphabetical Letter Recognition
BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)
AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020
AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)
Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA
Generate image analogies using neural matching and blending
neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).
Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR
Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours
Code for Learning to Segment The Tail (LST)
Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th
Learning 3D Part Assembly from a Single Image
Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single
An Straight Dilated Network with Wavelet for image Deblurring
SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati
Pytorch implementation of MalConv
MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole
Activating More Pixels in Image Super-Resolution Transformer
HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017
AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban
Python library for tracking human heads with FLAME (a 3D morphable head model)
Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It