The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Overview

Rule-based Representation Learner

This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scalable Rule-Based Representation Learning for Interpretable Classification.

drawing

RRL aims to obtain both good scalability and interpretability, and it automatically learns interpretable non-fuzzy rules for data representation and classification. Moreover, RRL can be easily adjusted to obtain a trade-off between classification accuracy and model complexity for different scenarios.

Requirements

  • torch>=1.3.0
  • torchvision>=0.4.1
  • tensorboard>=2.0.0
  • sklearn>=0.22.2.post1
  • numpy>=1.17.2
  • pandas>=0.24.2
  • matplotlib>=3.0.3
  • CUDA==10.1

Run the demo

We need to put the data sets in the dataset folder. You can specify one data set in the dataset folder and train the model as follows:

# trained on the tic-tac-toe data set with one GPU.
python3 experiment.py -d tic-tac-toe -bs 32 -s [email protected] -e401 -lrde 200 -lr 0.002 -ki 0 -mp 12481 -i 0 -wd 1e-6 &

The demo reads the data set and data set information first, then trains the RRL on the training set. During the training, you can check the training loss and the evaluation result on the validation set by:

tensorboard --logdir=log_folder/ --bind_all

drawing

The training log file (log.txt) can be found in a folder created in log_folder. In this example, the folder path is

log_folder/tic-tac-toe/tic-tac-toe_e401_bs32_lr0.002_lrdr0.75_lrde200_wd1[email protected]

After training, the evaluation result on the test set is shown in the file test_res.txt:

[INFO] - On Test Set:
        Accuracy of RRL  Model: 1.0
        F1 Score of RRL  Model: 1.0

Moreover, the trained RRL model is saved in model.pth, and the discrete RRL is printed in rrl.txt:

RID class_negative(b=-2.1733) class_positive(b=1.9689) Support Rule
(-1, 1) -5.8271 6.3045 0.0885 3_x & 6_x & 9_x
(-1, 2) -5.4949 5.4566 0.0781 7_x & 8_x & 9_x
(-1, 4) -4.5605 4.7578 0.1146 1_x & 2_x & 3_x
...... ...... ...... ...... ......

Your own data sets

You can use the demo to train RRL on your own data set by putting the data and data information files in the dataset folder. Please read DataSetDesc for a more specific guideline.

Available arguments

List all the available arguments and their default values by:

$ python3 experiment.py --help
usage: experiment.py [-h] [-d DATA_SET] [-i DEVICE_IDS] [-nr NR] [-e EPOCH]
                     [-bs BATCH_SIZE] [-lr LEARNING_RATE]
                     [-lrdr LR_DECAY_RATE] [-lrde LR_DECAY_EPOCH]
                     [-wd WEIGHT_DECAY] [-ki ITH_KFOLD] [-rc ROUND_COUNT]
                     [-ma MASTER_ADDRESS] [-mp MASTER_PORT] [-li LOG_ITER]
                     [--use_not] [--save_best] [--estimated_grad]
                     [-s STRUCTURE]

optional arguments:
  -h, --help            show this help message and exit
  -d DATA_SET, --data_set DATA_SET
                        Set the data set for training. All the data sets in
                        the dataset folder are available. (default: tic-tac-
                        toe)
  -i DEVICE_IDS, --device_ids DEVICE_IDS
                        Set the device (GPU ids). Split by @. E.g., [email protected]@3.
                        (default: None)
  -nr NR, --nr NR       ranking within the nodes (default: 0)
  -e EPOCH, --epoch EPOCH
                        Set the total epoch. (default: 41)
  -bs BATCH_SIZE, --batch_size BATCH_SIZE
                        Set the batch size. (default: 64)
  -lr LEARNING_RATE, --learning_rate LEARNING_RATE
                        Set the initial learning rate. (default: 0.01)
  -lrdr LR_DECAY_RATE, --lr_decay_rate LR_DECAY_RATE
                        Set the learning rate decay rate. (default: 0.75)
  -lrde LR_DECAY_EPOCH, --lr_decay_epoch LR_DECAY_EPOCH
                        Set the learning rate decay epoch. (default: 10)
  -wd WEIGHT_DECAY, --weight_decay WEIGHT_DECAY
                        Set the weight decay (L2 penalty). (default: 0.0)
  -ki ITH_KFOLD, --ith_kfold ITH_KFOLD
                        Do the i-th 5-fold validation, 0 <= ki < 5. (default:
                        0)
  -rc ROUND_COUNT, --round_count ROUND_COUNT
                        Count the round of experiments. (default: 0)
  -ma MASTER_ADDRESS, --master_address MASTER_ADDRESS
                        Set the master address. (default: 127.0.0.1)
  -mp MASTER_PORT, --master_port MASTER_PORT
                        Set the master port. (default: 12345)
  -li LOG_ITER, --log_iter LOG_ITER
                        The number of iterations (batches) to log once.
                        (default: 50)
  --use_not             Use the NOT (~) operator in logical rules. It will
                        enhance model capability but make the RRL more
                        complex. (default: False)
  --save_best           Save the model with best performance on the validation
                        set. (default: False)
  --estimated_grad      Use estimated gradient. (default: False)
  -s STRUCTURE, --structure STRUCTURE
                        Set the number of nodes in the binarization layer and
                        logical layers. E.g., [email protected], [email protected]@[email protected]. (default:
                        [email protected])

Citation

If our work is helpful to you, please kindly cite our paper as:

@article{wang2021scalable,
  title={Scalable Rule-Based Representation Learning for Interpretable Classification},
  author={Wang, Zhuo and Zhang, Wei and Liu, Ning and Wang, Jianyong},
  journal={arXiv preprint arXiv:2109.15103},
  year={2021}
}

License

MIT license

Owner
Zhuo Wang
Ph.D. student
Zhuo Wang
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022