QilingLab challenge writeup

Overview

qiling lab writeup

shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。

前情提要

Qiling 是一款功能強大的模擬框架,和 qemu user mode 類似,但可以做到更多功能,詳情請見他們的 github網站

他們有官方文件,解此題目前建議看一下。

我所解的為 aarch64 的 challenge,使用的 rootfs 為 qililng 所提供的 arm64_linux

逆向工具用 ghidra,因為我沒錢買 idapro。

First

先隨手寫個 python 用 qiling 執行 challenge binary。

import sys
from qiling import *
from qiling.const import QL_VERBOSE

sys.path.append("..")


if __name__ == "__main__":
    ql = Qiling(["qilinglab-aarch64"], "rootfs/arm64_linux",verbose=QL_VERBOSE.OFF)
    ql.run()

可以看到結果是 binary 會不正常執行,此為正常現象,有些 Challenge 沒解完會導致錯誤或是無窮迴圈。

Welcome to QilingLab.
Here is the list of challenges:
Challenge 1: Store 1337 at pointer 0x1337.
Challenge 2: Make the 'uname' syscall return the correct values.
Challenge 3: Make '/dev/urandom' and 'getrandom' "collide".
Challenge 4: Enter inside the "forbidden" loop.
Challenge 5: Guess every call to rand().
Challenge 6: Avoid the infinite loop.
Challenge 7: Don't waste time waiting for 'sleep'.
Challenge 8: Unpack the struct and write at the target address.
Challenge 9: Fix some string operation to make the iMpOsSiBlE come true.
Challenge 10: Fake the 'cmdline' line file to return the right content.
Challenge 11: Bypass CPUID/MIDR_EL1 checks.

Checking which challenge are solved...
Note: Some challenges will results in segfaults and infinite loops if they aren't solved.
[x]	

[x]	x0	:	 0x0
[x]	x1	:	 0x0
[x]	x2	:	 0x1
[x]	x3	:	 0x0
[x]	x4	:	 0x0

Challenge 1

把 0x1337 的位置的值改成 1337

用 qiling 把該位置的 memory 讀出來,在進行改寫,要注意 align 問題。詳情請見文件

    ql.mem.map(0x1337//4096*4096, 4096)
    ql.mem.write(0x1337,ql.pack16(1337) )

Challenge 2

改掉 uname 此 system call 的 return。

可以看到他去比對 uname.sysname 和 uname.version 是否為特定值。我採用對 system call 進行 hijack

去翻 linux 文件 可以看到 uname 回傳的格式為 :

struct utsname {
               char sysname[];    /* Operating system name (e.g., "Linux") */
               char nodename[];   /* Name within "some implementation-defined
                                     network" */
               char release[];    /* Operating system release
                                     (e.g., "2.6.28") */
               char version[];    /* Operating system version */
               char machine[];    /* Hardware identifier */
           #ifdef _GNU_SOURCE
               char domainname[]; /* NIS or YP domain name */
           #endif
};

依照此文件把相對應的位置改掉。注意如果 release 改太小或是沒給,會噴錯。

def my_syscall_uname(ql, write_buf, *args, **kw):
    buf = b'QilingOS\x00' # sysname
    ql.mem.write(write_buf, buf)
    buf = b'30000'.ljust(65, b'\x00') # important!! If not sat will `FATAL: kernel too old`
    ql.mem.write(write_buf+65*2, buf)
    buf = b'ChallengeStart'.ljust(65, b'\x00') # version
    ql.mem.write(write_buf+65*3, buf)
    regreturn = 0
    return regreturn

ql.set_syscall("uname", my_syscall_uname)

Challenge 3

/dev/random,從中讀取兩次,確保第一次的值和 getrandom 得到的值相同,且其中沒有第二次讀到值。

查了一下 getrandom 是一 system call。因此對 /dev/random 和 getrandom() 進行 hijack 即可

class Fake_urandom(QlFsMappedObject):
    def read(self, size):
        if(size > 1):
            return b"\x01" * size
        else:
            return b"\x02"
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

def my_syscall_getrandom(ql, write_buf, write_buf_size, flag , *args, **kw):
    buf = b"\x01" * write_buf_size
    ql.mem.write(write_buf, buf)
    regreturn = 0
    return regreturn
    
ql.add_fs_mapper('/dev/urandom', Fake_urandom())
ql.set_syscall("getrandom", my_syscall_getrandom)

Challenge 4

進入不能進去的迴圈

直接 hook cmp 的位置讓 reg w0 是 1 即可,位置記得要加上 pie。

    # 00100fd8 e0 1b 40 b9     ldr        w0,[sp, #local_8]
    # 00100fdc e1 1f 40 b9     ldr        w1,[sp, #local_4]
    # 00100fe0 3f 00 00 6b     cmp        w1,w0    <- hook         
def hook_cmp(ql):
    ql.reg.w0 = 1
    return

base_addr = ql.mem.get_lib_base(ql.path) # get pie_base addr
ql.hook_address(hook_cmp, base_addr + 0xfe0)

Challenge 5

rand() 出來的值和 0 比較要通過

直接 hijack rand() 讓他回傳都是 0 即可。

def hook_cmp(ql):
    ql.reg.w0 = 1
    return
    
ql.set_api("rand", hook_rand)

Challenge 6

解開無窮迴圈

和 Challenge 4 同想法,hook cmp。

def hook_cmp2(ql):
    ql.reg.w0 = 0
    return
    
ql.hook_address(hook_cmp2, base_addr + 0x001118)

Challenge 7

不要讓他 sleep。 解法很多,可以 hook sleep 這個 api,或是看 sleep linux 文件能知道內部處理是用 nanosleep,hook 他即可。

def hook_sleeptime(ql):
    ql.reg.w0 = 0
    return
ql.hook_address(hook_sleeptime, base_addr + 0x1154)

Challenge 8

裡面最難的一題,他是建立特殊一個結構長這個樣子。

struct something(0x18){ 
 string_ptr -> malloc (0x1e) ->  0x64206d6f646e6152
 long_int = 0x3DFCD6EA00000539
 check_addr -> check;
}  

由於他結構內部有 0x3DFCD6EA00000539 這個 magic byte,因此可以直接對此作搜尋並改寫內部記憶體。這邊要注意搜尋可能找到其他位置,因此前面可以加對 string_ptr 所在位置的判斷。

def find_and_patch(ql, *args, **kw):
    MAGIC = 0x3DFCD6EA00000539
    magic_addrs = ql.mem.search(ql.pack64(MAGIC)) 

    # check_all_magic
    for magic_addr in magic_addrs:
        # Dump and unpack the candidate structure
        malloc1_addr = magic_addr - 8
        malloc1_data = ql.mem.read(malloc1_addr, 24)
        # unpack three unsigned long
        string_addr, _ , check_addr = struct.unpack('QQQ', malloc1_data)

        # check string data        
        if ql.mem.string(string_addr) == "Random data":
            ql.mem.write(check_addr, b"\x01")
            break
    return
    
ql.hook_address(find_and_patch, base_addr + 0x011dc)

另一種解法則是由於該結構在 stack 上,因此直接讀 stack 即可。

Challenge 9

把一字串轉用tolower小寫,再用 strcmp 比較。

解法一樣很多種,我是 hijack tolower() 讓他啥事都不做。

def hook_tolower(ql):
    return
    
ql.set_api("tolower", hook_tolower)

Challenge 10

打開不存在的文件,讀取的值需要是 qilinglab

和 Challenge 3 作法一樣,這邊要注意的是 return 要是 byte,string 會出錯。 = =

class Fake_cmdline(QlFsMappedObject):

    def read(self, size):
        return b"qilinglab" # type should byte byte, string will error = =
    def fstat(self): # syscall fstat will ignore it if return -1
        return -1
    def close(self):
        return 0

ql.add_fs_mapper('/proc/self/cmdline', Fake_cmdline())

Challenge 11

可以看到他從 MIDR_EL1 取值,而此為特殊的暫存器。

這邊解法是去 hook code,我選擇 hook 這段

# 001013ec 00 00 38 d5     mrs        x0,midr_el1

去搜尋所有記憶體為 b"\x00\x00\x38\xD5" ,讓他執行時把 x0 暫存器改寫,並更改 pc。

def midr_el1_hook(ql, address, size):  
    if ql.mem.read(address, size) == b"\x00\x00\x38\xD5":
        # if any code is mrs        x0,midr_el1
        # Write the expected value to x0
        ql.reg.x0 = 0x1337 << 0x10
        # Go to next instruction
        ql.reg.arch_pc += 4
    # important !! Maybe hook library
    # see : https://joansivion.github.io/qilinglabs/
    return

ql.hook_code(midr_el1_hook)

Done

Thanks

Thanks MANSOUR Cyril release his writeup, help me alot.

Owner
Yuan
Yuan
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023