PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Overview

Saiency Map-aided GAN for RAW2RGB Mapping

The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping.

1 Implementations

Before running it, please ensure the environment is Python 3.6 and PyTorch 1.0.1.

1.1 Train

If you train it from scratch, please download the saliency map generated by our pre-trained SalGAN.

Stage 1:

python train.py     --in_root [the path of TrainingPhoneRaw]
		    --out_root [the path of TrainingCanonRGB]
		    --sal_root [the path of TrainingCanonRGB_saliency]

Stage 2:

python train.py     --epochs 30
                    --lr_g 0.0001
                    --in_root [the path of TrainingPhoneRaw]
                    --out_root [the path of TrainingCanonRGB]
                    --sal_root [the path of TrainingCanonRGB_saliency]
if you have more than one GPU, please change following codes:
python train.py     --multi_gpu True
                    --gpu_ids [the ids of your multi-GPUs]

The training pairs are normalized to (H/2) * (W/2) * 4 from H * W * 1 in order to save as .png format. The 4 channels represent R, G, B, G, respectively. You may check the original Bayer Pattern:

The training pairs are shown like this:

Our system architecture is shown as:

1.2 Test

At testing phase, please create a folder first if the folder is not exist.

Please download the pre-trained model first.

For small image patches:

python test.py 	    --netroot 'zyz987.pth' (please ensure the pre-trained model is in same path)
		    --baseroot [the path of TestingPhoneRaw]
		    --saveroot [the path that all the generated images will be saved to]

For full resolution images:

python test_full_res.py
or python test_full_res2.py
--netroot 'zyz987.pth' (please ensure the pre-trained model is in same path)
--baseroot [the path of FullResTestingPhoneRaw]
--saveroot [the path that all the generated images will be saved to]

Some randomly selected patches are shown as:

2 Comparison with Pix2Pix

We have trained a Pix2Pix framework using same settings.

Because both systems are trained only with L1 loss at first stage, the generated samples are obviously more blurry than second stage. There is artifact in the images produced by Pix2Pix due to Batch Normalization. Moreover, we show the results produced by proposed architecture trained only with L1 loss for 40 epochs. Note that, our proposed system are optimized by whole objectives for last 30 epochs. It demonstrates that adversarial training and perceptual loss indeed enhance visual quality.

3 Full resolution results

Because the memory is not enough for generate a high resolution image, we alternatively generate patch-by-patch.

4 Poster

5 Related Work

The privious phone photo enhancers:

  • Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth Vanhoey, and Luc Van Gool. Dslr-quality photos on mobile devices with deep convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 3277–3285, 2017.

  • Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth Vanhoey, and Luc Van Gool. Wespe: weakly supervised photo enhancer for digital cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 691–700, 2018.

The conditional image generation:

  • Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1125– 1134, 2017.

  • Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycleconsistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 2223– 2232, 2017.

6 Reference

If you have any question, please do not hesitate to contact [email protected]

If you find this code useful to your research, please consider citing:

@inproceedings{zhao2019saliency,
  title={Saliency map-aided generative adversarial network for raw to rgb mapping},
  author={Zhao, Yuzhi and Po, Lai-Man and Zhang, Tiantian and Liao, Zongbang and Shi, Xiang and others},
  booktitle={2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)},
  pages={3449--3457},
  year={2019},
  organization={IEEE}
}

An extention of this work can be found at: https://github.com/zhaoyuzhi/Semantic-Colorization-GAN

@article{zhao2020scgan,
  title={SCGAN: Saliency Map-guided Colorization with Generative Adversarial Network},
  author={Zhao, Yuzhi and Po, Lai-Man and Cheung, Kwok-Wai and Yu, Wing-Yin and Abbas Ur Rehman, Yasar},
  journal={IEEE Transactions on Circuits and Systems for Video Technology},
  year={2020},
  publisher={IEEE}
}
Owner
Yuzhi ZHAO
[email protected] (电信卓越班) Ph.D.
Yuzhi ZHAO
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023