A Broader Picture of Random-walk Based Graph Embedding

Overview

Random-walk Embedding Framework

This repository is a reference implementation of the random-walk embedding framework as described in the paper:

A Broader Picture of Random-walk Based Graph Embedding.
Zexi Huang, Arlei Silva, Ambuj Singh.
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021.

The framework decomposes random-walk based graph embedding into three major components: random-walk process, similarity function, and embedding algorithm. By tuning the components, it not only covers many existing approaches such as DeepWalk but naturally motivates novel ones that have shown superior performance on certain downstream tasks.

Usage

Example

To use the framework with default settings to embed the BlogCatalog network:
python src/embedding.py --graph graph/blogcatalog.edges --embeddings emb/blogcatalog.embeddings
where graph/blogcatalog.edges stores the input graph and emb/blogcatalog.embeddings is the target file for output embeddings.

Options

You can check out all the available options (framework components, Markov time parameters, graph types, etc.) with:
python src/embedding.py --help

Input Graph

The supported input graph format is a list of edges:

node1_id_int node2_id_int <weight_float, optional>

where node ids are should be consecutive integers starting from 1. The graph is by default undirected and unweighted, which can be changed by setting appropriate flags.

Output Embeddings

The output embedding file has n lines where n is the number of nodes in the graph. Each line stores the learned embedding of the node with its id equal to the line number:

emb_dim1 emb_dim2 ... emb_dimd

Evaluating

Here, we show by examples how to evaluate and compare different settings of our framework on node classification, link prediction, and community detection tasks. Full evaluation options are can be found with:
python src/evaluating.py --help

Note that the results shown below may not be identical to those in the paper due to different random seeds, but the conclusions are the same.

Node Classification

Once we generate the embedding with the script in previous section, we can call
python src/evaluating.py --task node-classification --embeddings emb/blogcatalog.embeddings --training-ratio 0.5
to compute the Micro-F1 and Macro-F1 scores of the node classification.

The results for comparing Pointwise Mutual Information (PMI) and Autocovariance (AC) similarity metrics with the best Markov times and varying training ratios are as follows:

Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%
PMI Micro-F1 0.3503 0.3814 0.3993 0.4106 0.4179 0.4227 0.4255 0.4222 0.4228
(time=4) Macro-F1 0.2212 0.2451 0.2575 0.2669 0.2713 0.2772 0.2768 0.2689 0.2678
AC Micro-F1 0.3547 0.3697 0.3785 0.3837 0.3872 0.3906 0.3912 0.3927 0.3930
(time=5) Macro-F1 0.2137 0.2299 0.2371 0.2406 0.2405 0.2413 0.2385 0.2356 0.2352

Link Prediction

Prepare

To evaluate the embedding method on link prediction, we first have to remove a ratio of edges in the original graph:
python src/evaluating.py --task link-prediction --mode prepare --graph graph/blogcatalog.edges --remaining-edges graph/blogcatalog.remaining-edges --removed-edges graph/blogcatalog.removed-edges

This takes the original graph graph/blogcatalog.edges as input and output the removed and remaining edges to graph/blogcatalog.removed-edges and graph/blogcatalog.remaining-edges.

Embed

Then, we embed based on the remaining edges of the network with the embedding script. For example:
python src/embedding.py --graph graph/blogcatalog.remaining-edges --embeddings emb/blogcatalog.residual-embeddings

Evaluate

Finally, we evaluate the performance of link prediction in terms of [email protected] based on the embeddings of the residual graph and the removed edges:
python src/evaluating.py --task link-prediction --mode evaluate --embeddings emb/blogcatalog.residual-embeddings --remaining-edges graph/blogcatalog.remaining-edges --removed-edges graph/blogcatalog.removed-edges --k 1.0

The results for comparing PMI and autocovariance similarity metrics with the best Markov times and varying k are as follows:

k 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
PMI (time=1) 0.2958 0.2380 0.2068 0.1847 0.1678 0.1560 0.1464 0.1382 0.1315 0.1260
AC (time=3) 0.4213 0.3420 0.2982 0.2667 0.2434 0.2253 0.2112 0.2000 0.1893 0.1802

Community Detection

Assume the embeddings for the Airport network emb/airport.embeddings have been generated. The following computes the Normalized Mutual Information (NMI) between the ground-truth country communities and the k-means clustering of embeddings:
python src/evaluating.py --task community-detection --embeddings emb/airport.embeddings --communities graph/airport.country-labels

Citing

If you find our framework useful, please consider citing the following paper:

@inproceedings{random-walk-embedding,
author = {Huang, Zexi and Silva, Arlei and Singh, Ambuj},
 title = {A Broader Picture of Random-walk Based Graph Embedding},
 booktitle = {SIGKDD},
 year = {2021}
}
Owner
Zexi Huang
Zexi Huang
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022