[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Related tags

Deep LearningSpCL
Overview

Python >=3.5 PyTorch >=1.0

Self-paced Contrastive Learning (SpCL)

The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID, which is accepted by NeurIPS-2020. SpCL achieves state-of-the-art performances on both unsupervised domain adaptation tasks and unsupervised learning tasks for object re-ID, including person re-ID and vehicle re-ID.

framework

Updates

[2020-10-13] All trained models for the camera-ready version have been updated, see Trained Models for details.

[2020-09-25] SpCL has been accepted by NeurIPS on the condition that experiments on DukeMTMC-reID dataset should be removed, since the dataset has been taken down and should no longer be used.

[2020-07-01] We did the code refactoring to support distributed training, stronger performances and more features. Please see OpenUnReID.

Requirements

Installation

git clone https://github.com/yxgeee/SpCL.git
cd SpCL
python setup.py develop

Prepare Datasets

cd examples && mkdir data

Download the person datasets Market-1501, MSMT17, PersonX, and the vehicle datasets VehicleID, VeRi-776, VehicleX. Then unzip them under the directory like

SpCL/examples/data
├── market1501
│   └── Market-1501-v15.09.15
├── msmt17
│   └── MSMT17_V1
├── personx
│   └── PersonX
├── vehicleid
│   └── VehicleID -> VehicleID_V1.0
├── vehiclex
│   └── AIC20_ReID_Simulation -> AIC20_track2/AIC20_ReID_Simulation
└── veri
    └── VeRi -> VeRi_with_plate

Prepare ImageNet Pre-trained Models for IBN-Net

When training with the backbone of IBN-ResNet, you need to download the ImageNet-pretrained model from this link and save it under the path of logs/pretrained/.

mkdir logs && cd logs
mkdir pretrained

The file tree should be

SpCL/logs
└── pretrained
    └── resnet50_ibn_a.pth.tar

ImageNet-pretrained models for ResNet-50 will be automatically downloaded in the python script.

Training

We utilize 4 GTX-1080TI GPUs for training. Note that

  • The training for SpCL is end-to-end, which means that no source-domain pre-training is required.
  • use --iters 400 (default) for Market-1501 and PersonX datasets, and --iters 800 for MSMT17, VeRi-776, VehicleID and VehicleX datasets;
  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds $SOURCE_DATASET -dt $TARGET_DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### PersonX -> Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds personx -dt market1501 --logs-dir logs/spcl_uda/personx2market_resnet50

### Market-1501 -> MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 \
  -ds market1501 -dt msmt17 --logs-dir logs/spcl_uda/market2msmt_resnet50

### VehicleID -> VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 --height 224 --width 224 \
  -ds vehicleid -dt veri --logs-dir logs/spcl_uda/vehicleid2veri_resnet50

Unsupervised Learning

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d $DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d market1501 --logs-dir logs/spcl_usl/market_resnet50

### MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 \
  -d msmt17 --logs-dir logs/spcl_usl/msmt_resnet50

### VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 --height 224 --width 224 \
  -d veri --logs-dir logs/spcl_usl/veri_resnet50

Evaluation

We utilize 1 GTX-1080TI GPU for testing. Note that

  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use --dsbn for domain adaptive models, and add --test-source if you want to test on the source domain;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To evaluate the domain adaptive model on the target-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d $DATASET --resume $PATH_OF_MODEL

To evaluate the domain adaptive model on the source-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d $DATASET --resume $PATH_OF_MODEL

Some examples:

### Market-1501 -> MSMT17 ###
# test on the target domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d msmt17 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar
# test on the source domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d market1501 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar

Unsupervised Learning

To evaluate the model, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d $DATASET --resume $PATH

Some examples:

### Market-1501 ###
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d market1501 --resume logs/spcl_usl/market_resnet50/model_best.pth.tar

Trained Models

framework

You can download the above models in the paper from [Google Drive] or [Baidu Yun](password: w3l9).

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{ge2020selfpaced,
    title={Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID},
    author={Yixiao Ge and Feng Zhu and Dapeng Chen and Rui Zhao and Hongsheng Li},
    booktitle={Advances in Neural Information Processing Systems},
    year={2020}
}
Owner
Yixiao Ge
Ph.D Candidate @ CUHK-MMLab
Yixiao Ge
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021