Convnet transfer - Code for paper How transferable are features in deep neural networks?

Overview

How transferable are features in deep neural networks?

This repository contains source code necessary to reproduce the results presented in the following paper:

@inproceedings{yosinski_2014_NIPS
  title={How transferable are features in deep neural networks?},
  author={Yosinski, Jason and Clune, Jeff and Bengio, Yoshua and Lipson, Hod},
  booktitle={Advances in Neural Information Processing Systems 27 (NIPS '14)},
  editor = {Z. Ghahramani and M. Welling and C. Cortes and N.D. Lawrence and K.Q. Weinberger},
  publisher = {Curran Associates, Inc.},
  pages = {3320--3328},
  year={2014}
}

The are four steps to using this codebase to reproduce the results in the paper.

  • Assemble prerequisites
  • Create datasets
  • Train models
  • Gather and plot results

Each is described below. Training results are also provided in the results directory for those just wishing to compare results to their own work without undertaking the arduous training process.

Assemble prerequisites

Several dependencies should be installed.

  • To run experiments: Caffe and its relevant dependencies (see install tutorial).
  • To produce plots: the IPython, numpy, and matplotlib packages for python. Depending on your setup, it may be possible to install these via pip install ipython numpy matplotlib.

Create Datasets

1. Obtain ILSVRC 2012 dataset

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 dataset can be downloaded here (registration required).

2. Create derivative dataset splits

The necessary smaller derivative datasets (random halves, natural and man-made halves, and reduced volume versions) can be created from the raw ILSVRC12 dataset.

$ cd ilsvrc12
$ ./make_reduced_datasets.sh

The script will do most of the work, including setting random seeds to hopefully produce the exact same random splits used in the paper. Md5sums are listed for each dataset file at the bottom of make_reduced_datasets.sh, which can be used to verify the match. Results may vary on different platforms though, so don't worry too much if your sums don't match.

3. Convert datasets to databases

The datasets created above are so far just text files providing a list of image filenames and class ids. To train a Caffe model, they should be converted to a LevelDB or LMDB, one per dataset. See the Caffe ImageNet Tutorial for a more in depth look at this process.

First, edit create_all_leveldbs.sh and set the IMAGENET_DIR and CAFFE_TOOLS_DIR to point to the directories containing the ImageNet image files and compiled caffe tools (like convert_imageset.bin), respectively. Then run:

$ ./create_all_leveldbs.sh

This step takes a lot of space (and time), approximately 230 GB for the base training dataset, and on average 115 GB for each of the 10 split versions, for a total of about 1.5 TB. If this is prohibitive, you might consider using a different type of data layer type for Caffe that loads images directly from a single shared directory.

4. Compute the mean of each dataset

Again, edit the paths in the script to point to the appropriate locations, and then run:

$ ./create_all_means.sh

This just computes the mean of each dataset and saves it in the dataset directory. Means are subtracted from input images during training and inference.

Train models

A total of 163 networks were trained to produce the results in the paper. Many of these networks can be trained in parallel, but because weights are transferred from one network to another, some must be trained serially. In particular, all networks in the first block below must be trained before any in the second block can be trained. All networks within a block may be trained at the same time. The "whenever" block does not contain dependencies and can be trained any time.

Block: one
  half*       (10 nets)

Block: two
  transfer*   (140 nets)

Block: whenever
  netbase     (1 net)
  reduced-*   (12 nets)

To train a given network, change to its directory, copy (or symlink) the required caffe executable, and run the training procedure. This can be accomplished using the following commands, demonstrated for the half0A network:

$ cd results/half0A
$ cp /path/to/caffe/build/tools/caffe.bin .
$ ./caffe.bin train -solver imagenet_solver.prototxt

Repeat this process for all networks in block: one and block: whenever above. Once the networks in block: one are trained, train all the networks in block: two similarly. This time the command is slightly different, because we need to load the base network in order to fine-tune it on the target task. Here's an example for the transfer0A0A_1_1 network:

$ cd results/transfer0A0A_1_1
$ cp /path/to/caffe/build/tools/caffe.bin .
$ ./caffe.bin train -solver imagenet_solver.prototxt -weights basenet/caffe_imagenet_train_iter_450000

The basenet symlinks have been added to point to the appropriate base network, but the basenet/caffe_imagenet_train_iter_450000 file will not exist until the relevant block: one networks has been trained.

Training notes: while the above procedure should work if followed literally, because each network takes about 9.5 days to train (on a K20 GPU), it will be much faster to train networks in parallel in a cluster environment. To do so, create and submit jobs as appropriate for your system. You'll also want to ensure that the output of the training procedure is logged, either by piping to a file

$ ./caffe.bin train ... > log_file 2>&1

or via whatever logging facilities are supplied by your cluster or job manager setup.

Plot results

Once the networks are trained, the results can be plotted using the included IPython notebook plots/transfer_plots.ipynb. Start the IPython Notebook server:

$ cd plots
$ ipython notebook

Select the transfer_plots.ipynb notebook and execute the included code. Note that without modification, the code will load results from the cached log files included in this repository. If you've run your own training and wish to plot those log files, change the paths in the "Load all the data" section to point to your log files instead.

Shortcut: to skip all the work and just see the results, take a look at this notebook with cached plots.

Questions?

Please drop me a line if you have any questions!

Owner
Jason Yosinski
Jason Yosinski
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022