Label Hallucination for Few-Shot Classification

Overview

Label Hallucination for Few-Shot Classification

This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classification . If you find this repo useful for your research, please consider citing the paper.

@article{Jian2022LabelHalluc,
    author = {Yiren Jian and Lorenzo Torresani},
    title = {Label Hallucination for Few-shot Classification},
    journal = {AAAI},
    year = {2022}
}
@article{jian2021label,
      title={Label Hallucination for Few-Shot Classification},
      author={Yiren Jian and Lorenzo Torresani},
      journal={arXiv preprint arXiv:2112.03340},
      year={2021}
}

Requirements

This repo was tested with Ubuntu 18.04.5 LTS, Python 3.6, PyTorch 1.4.0, and CUDA 10.1. You will need at least 32GB RAM and 22GB VRAM (i.e. two Nvidia RTX-2080Ti) for running full experiments in this repo.

Download Data

The data we used here is preprocessed by the repo of MetaOptNet, Please find the renamed versions of the files in below link by RFS.

Download and unzip the dataset, put them under data directory.

Embedding Learning

Please follow RFS, SKD and Rizve et al. (or other transfer learning methods) for the embedding learning. RFS provides a Dropbox link for downloading their pre-trained models for miniImageNet.

We provide our pretrained embedding models by [SKD] and [Rizve et al.] at Dropbox. Note that those models are NOT the official release by original authors, and they perform slightly worse than what reported in their papers. Better models could be trained with longer durations and/or by hyper-parameters tuning.

Once finish the embedding training, put the pre-trained models in models_pretrained directory.

Running Our Fine-tuning

To perform 5-way 5-shot classifications, run:

# For CIFAR-FS
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset CIFAR-FS --data_root data/CIFAR-FS/ --model_path models_pretrained/cifar-fs_skd_gen1.pth --n_shot 5 --n_aug_support 5 --epoch 1 --norm_feat

# For FC100
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset FC100 --data_root data/FC100/ --model_path models_pretrained/fc100_skd_gen1.pth --n_shot 5 --n_aug_support 5 --epoch 1 --norm_feat

# For miniImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset miniImageNet --data_root data/miniImageNet/ --model_path models_pretrained/mini_skd_gen1.pth --n_shot 5 --n_aug_support 5 --epoch 1 --norm_feat

# For tieredImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel_tieredImageNet.py --dataset tieredImageNet --data_root data/tieredImageNet/ --model_path models_pretrained/tiered_skd_gen0.pth --n_shot 5 --n_aug_support 5  --early 200 --print 50 --norm_feat

To perform 5-way 1-shot classifications, run:

# For CIFAR-FS
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset CIFAR-FS --data_root data/CIFAR-FS/ --model_path models_pretrained/cifar-fs_skd_gen1.pth --n_shot 1 --n_aug_support 25 --epoch 3 --norm_feat

# For FC100
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset FC100 --data_root data/FC100/ --model_path models_pretrained/fc100_skd_gen1.pth --n_shot 1 --n_aug_support 25 --epoch 5 --norm_feat

# For miniImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset miniImageNet --data_root data/miniImageNet/ --model_path models_pretrained/mini_skd_gen1.pth --n_shot 1 --n_aug_support 25 --early 150 --norm_feat

# For tieredImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel_tieredImageNet.py --dataset tieredImageNet --data_root data/tieredImageNet/ --model_path models_pretrained/tiered_skd_gen0.pth --n_shot 1 --n_aug_support 25  --early 200 --print 50 --norm_feat

Reading the outputs

400it RFS/SKD/baseline acc: 0.7200 for this episode
==> training...
Epoch: [1][100/288]    Time 0.121 (0.115)    Data 0.001 (0.003)    ..
Epoch: [1][200/288]    Time 0.112 (0.114)    Data 0.001 (0.002)    ...
epoch 400, total time 32.77
acc1: 0.6567, std1: 0.0076, acc2: 0.6820, std2: 0.0080,
epochs: 1, acc2: 0.6400, std2: 0.0080
...

The above is an example print-out for FC100 5-shot. acc1: 0.6567, std1: 0.0076 is the accuracy and the deviation of LinearRegression method with fixed embeddings (used in RFS and SKD). acc2: 0.6820, std2: 0.0080 is the result by our method.

Contacts

For any questions, please contact authors.

Acknowlegements

Thanks to RFS, for the preliminary implementations.

Owner
Yiren Jian
PhD student in Computer Vision and NLP
Yiren Jian
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022