Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Overview

Label-Efficient Semantic Segmentation with Diffusion Models

Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

This code is based on datasetGAN and guided-diffusion.

Note: use --recurse-submodules when clone.

 

Overview

The paper investigates the representations learned by the state-of-the-art DDPMs and shows that they capture high-level semantic information valuable for downstream vision tasks. We design a simple segmentation approach that exploits these representations and outperforms the alternatives in the few-shot operating point in the context of semantic segmentation.

DDPM-based Segmentation

 

Dependencies

  • Python >= 3.7
  • Packages: see requirements.txt

 

Datasets

The evaluation is performed on 6 collected datasets with a few annotated images in the training set: Bedroom-18, FFHQ-34, Cat-15, Horse-21, CelebA-19 and ADE-Bedroom-30. The number corresponds to the number of semantic classes.

datasets.tar.gz (~47Mb)

 

DDPM

Pretrained DDPMs

The models trained on LSUN are adopted from guided-diffusion. FFHQ-256 is trained by ourselves using the same model parameters as for the LSUN models.

LSUN-Bedroom: lsun_bedroom.pt
FFHQ-256: ffhq.pt
LSUN-Cat: lsun_cat.pt
LSUN-Horse: lsun_horse.pt

Run

  1. Download the datasets:
      bash datasets/download_datasets.sh
  2. Download the DDPM checkpoint:
       bash checkpoints/ddpm/download_checkpoint.sh
  3. Check paths in experiments/ /ddpm.json
  4. Run: bash scripts/ddpm/train_interpreter.sh

Available checkpoint names: lsun_bedroom, ffhq, lsun_cat, lsun_horse
Available dataset names: bedroom_28, ffhq_34, cat_15, horse_21, celeba_19, ade_bedroom_30

How to improve the performance

  1. Set input_activations=true in experiments/ /ddpm.json .
       In this case, the feature dimension is 18432.
  2. Tune for a particular task what diffusion steps and UNet blocks to use.

 

DatasetDDPM

Synthetic datasets

To download DDPM-produced synthetic datasets (50000 samples, ~7Gb):
bash synthetic-datasets/gan/download_synthetic_dataset.sh

Run | Option #1

  1. Download the synthetic dataset:
       bash synthetic-datasets/ddpm/download_synthetic_dataset.sh
  2. Check paths in experiments/ /datasetDDPM.json
  3. Run: bash scripts/datasetDDPM/train_deeplab.sh

Run | Option #2

  1. Download the datasets:
       bash datasets/download_datasets.sh

  2. Download the DDPM checkpoint:
       bash checkpoints/ddpm/download_checkpoint.sh

  3. Check paths in experiments/ /datasetDDPM.json

  4. Train an interpreter on a few DDPM-produced annotated samples:
       bash scripts/datasetDDPM/train_interpreter.sh

  5. Generate a synthetic dataset:
       bash scripts/datasetDDPM/generate_dataset.sh
        Please specify the hyperparameters in this script for the available resources.
        On 8xA100 80Gb, it takes about 12 hours to generate 10000 samples.

  6. Run: bash scripts/datasetDDPM/train_deeplab.sh
       One needs to specify the path to the generated data. See comments in the script.

Available checkpoint names: lsun_bedroom, ffhq, lsun_cat, lsun_horse
Available dataset names: bedroom_28, ffhq_34, cat_15, horse_21

 

SwAV

Pretrained SwAVs

We pretrain SwAV models using the official implementation on the LSUN and FFHQ-256 datasets:

LSUN-Bedroom: lsun_bedroom.pth
FFHQ-256: ffhq.pth
LSUN-Cat: lsun_cat.pth
LSUN-Horse: lsun_horse.pth

Training setup:

Dataset epochs batch-size multi-crop num-prototypes
LSUN 200 1792 2x256 + 6x108 1000
FFHQ-256 400 2048 2x224 + 6x96 200

Run

  1. Download the datasets:
       bash datasets/download_datasets.sh
  2. Download the SwAV checkpoint:
       bash checkpoints/swav/download_checkpoint.sh
  3. Check paths in experiments/ /swav.json
  4. Run: bash scripts/swav/train_interpreter.sh

Available checkpoint names: lsun_bedroom, ffhq, lsun_cat, lsun_horse
Available dataset names: bedroom_28, ffhq_34, cat_15, horse_21, celeba_19, ade_bedroom_30

 

DatasetGAN

Opposed to the official implementation, more recent StyleGAN2(-ADA) models are used.

Synthetic datasets

To download GAN-produced synthetic datasets (50000 samples):

bash synthetic-datasets/gan/download_synthetic_dataset.sh

Run

Since we almost fully adopt the official implementation, we don't provide our reimplementation here. However, one can still reproduce our results:

  1. Download the synthetic dataset:
      bash synthetic-datasets/gan/download_synthetic_dataset.sh
  2. Change paths in experiments/ /datasetDDPM.json
  3. Change paths and run: bash scripts/datasetDDPM/train_deeplab.sh

Available dataset names: bedroom_28, ffhq_34, cat_15, horse_21

 

Results

  • Performance in terms of mean IoU:
Method Bedroom-28 FFHQ-34 Cat-15 Horse-21 CelebA-19 ADE-Bedroom-30
ALAE 20.0 ± 1.0 48.1 ± 1.3 -- -- 49.7 ± 0.7 15.0 ± 0.5
VDVAE -- 57.3 ± 1.1 -- -- 54.1 ± 1.0 --
GAN Inversion 13.9 ± 0.6 51.7 ± 0.8 21.4 ± 1.7 17.7 ± 0.4 51.5 ± 2.3 11.1 ± 0.2
GAN Encoder 22.4 ± 1.6 53.9 ± 1.3 32.0 ± 1.8 26.7 ± 0.7 53.9 ± 0.8 15.7 ± 0.3
SwAV 41.0 ± 2.3 54.7 ± 1.4 44.1 ± 2.1 51.7 ± 0.5 53.2 ± 1.0 30.3 ± 1.5
DatasetGAN 31.3 ± 2.7 57.0 ± 1.0 36.5 ± 2.3 45.4 ± 1.4 -- --
DatasetDDPM 46.9 ± 2.8 56.0 ± 0.9 45.4 ± 2.8 60.4 ± 1.2 -- --
DDPM 46.1 ± 1.9 57.0 ± 1.4 52.3 ± 3.0 63.1 ± 0.9 57.0 ± 1.0 32.3 ± 1.5

 

  • Examples of segmentation masks predicted by the DDPM-based method:
DDPM-based Segmentation

 

Cite

@misc{baranchuk2021labelefficient,
      title={Label-Efficient Semantic Segmentation with Diffusion Models}, 
      author={Dmitry Baranchuk and Ivan Rubachev and Andrey Voynov and Valentin Khrulkov and Artem Babenko},
      year={2021},
      eprint={2112.03126},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Yandex Research
Yandex Research
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022