Disagreement-Regularized Imitation Learning

Overview

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in codebase for where the bug was fixed at. [link]

Disagreement-Regularized Imitation Learning

Code to train the models described in the paper "Disagreement-Regularized Imitation Learning", by Kianté Brantley, Wen Sun and Mikael Henaff.

Usage:

Install using pip

Install the DRIL package

pip install -e .

Software Dependencies

"stable-baselines", "rl-baselines-zoo", "baselines", "gym", "pytorch", "pybullet"

Data

We provide a python script to generate expert data from per-trained models using the "rl-baselines-zoo" repository. Click "Here" to see all of the pre-trained agents available and their respective perfromance. Replace <name-of-environment> with the name of the pre-trained agent environment you would like to collect expert data for.

python -u generate_demonstration_data.py --seed <seed-number> --env-name <name-of-environment> --rl_baseline_zoo_dir <location-to-top-level-directory>

Training

DRIL requires a per-trained ensemble model and a per-trained behavior-cloning model.

Note that <location-to-rl-baseline-zoo-directory> is the full-path to the top-level directory to the rl_baseline_zoo repository.

To train only a behavior-cloning model run:

python -u main.py --env-name <name-of-environment> --num-trajs <number-of-trajectories> --behavior_cloning --rl_baseline_zoo_dir <location-to-rl-baseline-zoo-directory> --seed <seed-number>'

To train only a ensemble model run:

python -u main.py --env-name <name-of-environment> --num-trajs <number-of-trajectories> --pretrain_ensemble_only --rl_baseline_zoo_dir <location-to-rl-baseline-zoo-directory> --seed <seed-number>'

To train a DRIL model run the command below. Note that command below first checks that both the behavior cloning model and the ensemble model are trained, if they are not the script will automatically train both the ensemble and behavior-cloning model.

python -u main.py --env-name <name-of-environment> --default_experiment_params <type-of-env>  --num-trajs <number-of-trajectories> --rl_baseline_zoo_dir <location-to-rl-baseline-zoo-directory> --seed <seed-number>  --dril 

--default_experiment_params are the default parameters we use in the DRIL experiments and has two options: atari and continous-control

Visualization

After training the models, the results are stored in a folder called trained_results. Run the command below to reproduce the plots in our paper. If you change any of the hyperparameters, you will need to change the hyperparameters in the plot file naming convention.

python -u plot.py -env <name-of-environment>

Empirical evaluation

Atari

Results on Atari environments. Empirical evaluation

Continous Control

Results on continuous control tasks. Empirical evaluation

Acknowledgement:

We would like to thank Ilya Kostrikov for creating this "repo" that our codebase builds on.

Owner
Kianté Brantley
PhD student at University of Maryland | Member of @umdclip, @coralumbc and @CILVRatNYU | Fitness enthusiast | (He/Him)
Kianté Brantley
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022