Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Overview

Codes for ECBSR

Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
Xindong Zhang, Hui Zeng, Lei Zhang
ACM Multimedia 2021

Codes

An older version implemented based on EDSR is place on /legacy folder. For more details, please refer to /legacy/README.md. The following is the lighten version implemented by us.

Dependencies & Installation

Please refer to the following simple steps for installation.

git clone https://github.com/xindongzhang/ECBSR.git
cd ECBSR
pip install -r requirements.txt

Training and benchmarking data can be downloaded from DIV2K and benchmark, respectively. Thanks for excellent work by EDSR.

Training & Testing

You could also try less/larger batch-size, if there are limited/enough hardware resources in your GPU-server. ECBSR is trained and tested with colors=1, e.g Y channel out of Ycbcr.

cd ECBSR

## ecbsr-m4c8-x2-prelu(you can revise the parameters of the yaml-config file accordding to your environments)
python train.py --config ./configs/ecbsr_x2_m4c8_prelu.yml

## ecbsr-m4c8-x4-prelu
python train.py --config ./configs/ecbsr_x4_m4c8_prelu.yml

## ecbsr-m4c16-x2-prelu
python train.py --config ./configs/ecbsr_x2_m4c16_prelu.yml

## ecbsr-m4c16-x4-prelu
python train.py --config ./configs/ecbsr_x4_m4c16_prelu.yml

Hardware deployment

Frontend conversion

We provide convertor for model conversion to different frontend, e.g. onnx/pb/tflite. We currently developed and tested the model with only one-channel(Y out of Ycbcr). Since the internal data-layout are quite different between tf(NHWC) and pytorch(NCHW), espetially for the pixelshuffle operation. Care must be taken to handle the data-layout, if you want to extend the pytorch-based training framework to RGB input data and deploy it on tensorflow. Follow are the demo scripts for model conversion to specific frontend:

## convert the trained pytorch model to onnx with plain-topology.
python convert.py --config xxx.yml --target_frontend onnx --output_folder XXX --inp_n 1 --inp_c 1 --inp_h 270 --inp_w 480

## convert the trained pytorch model to pb-1.x with plain-topology.
python convert.py --config xxx.yml --target_frontend pb-1.x --output_folder XXX --inp_n 1 --inp_c 1 --inp_h 270 --inp_w 480

## convert the trained pytorch model to pb-ckpt with plain-topology
python convert.py --config xxx.yml --target_frontend pb-ckpt --output_folder XXX --inp_n 1 --inp_c 1 --inp_h 270 --inp_w 480

AI-Benchmark

You can download the newest version of evaluation tool from AI-Benchmark. Then you can install the app via ADB tools,

adb install -r [name-of-ai-benchmar].apk

MNN (Come soon!)

For universal CPU & GPU of mobile hardware implementation.

RKNN (Come soon!)

For NPU inplementation of Rockchip hardware, e.g. RK3399Pro/RK1808.

MiniNet (Come soon!)

A super light-weight CNN inference framework implemented by us, with only conv-3x3, element-wise op, ReLU(PReLU) activations, and pixel-shuffle for common super resolution task. For more details, please refer to /ECBSR/deploy/mininet

Quantization tools (Come soon!)

For fixed-arithmetic quantization of image super resolution.

Citation


@article{zhang2021edge,
  title={Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices},
  author={Zhang, Xindong and Zeng, Hui and Zhang, Lei},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia (ACM MM)},
  year={2021}
}

Acknowledgement

Thanks EDSR for the pioneering work and excellent codebase! The implementation integrated with EDSR is placed on /legacy

Owner
xindong zhang
xindong zhang
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022