GPU Accelerated Non-rigid ICP for surface registration

Overview

GPU Accelerated Non-rigid ICP for surface registration

Introduction

Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve sparse least square problem, which is time consuming. In this repo, we implement a pytorch version NICP algorithm based on paper Amberg et al. Detailedly, we leverage the AMSGrad to optimize the linear regresssion, and then found nearest points iteratively. Additionally, we smooth the calculated mesh with laplacian smoothness term. With laplacian smoothness term, the wireframe is also more neat.


Quick Start

install

We use python3.8 and cuda10.2 for implementation. The code is tested on Ubuntu 20.04.

  • The pytorch3d cannot be installed directly from pip install pytorch3d, for the installation of pytorch3d, see pytorch3d.
  • For other packages, run
pip install -r requirements.txt
  • For the template face model, currently we use a processed version of BFM face model from 3DMMfitting-pytorch, download the BFM09_model_info.mat from 3DMMfitting-pytorch and put it into the ./BFM folder.
  • For demo, run
python demo_nicp.py

we show demo for NICP mesh2mesh and NICP mesh2pointcloud. We have two param sets for registration:

milestones = set([50, 80, 100, 110, 120, 130, 140])
stiffness_weights = np.array([50, 20, 5, 2, 0.8, 0.5, 0.35, 0.2])
landmark_weights = np.array([5, 2, 0.5, 0, 0, 0, 0, 0])

This param set is used for registration on fine grained mesh

milestones = set([50, 100])
stiffness_weights = np.array([50, 20, 5])
landmark_weights = np.array([50, 20, 5])

This param set is used for registration on noisy point clouds

Templated Model

You can also use your own templated face model with manually specified landmarks.

Todo

Currently we write some batchwise functions, but batchwise NICP is not supported now. We will support batch NICP in further releases.

You might also like...
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

A non-linear, non-parametric Machine Learning method capable of modeling complex datasets
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

Code for
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Weakly Supervised Learning of Rigid 3D Scene Flow
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these environments (PPO, SAC, evolutionary strategy, and direct trajectory optimization are implemented).

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Comments
  • Lack of file “BFM09_model_info.mat”

    Lack of file “BFM09_model_info.mat”

    Traceback (most recent call last): File "demo_nicp.py", line 28, in bfm_meshes, bfm_lm_index = load_bfm_model(torch.device('cuda:0')) File "/data/pytorch-nicp/bfm_model.py", line 15, in load_bfm_model bfm_meta_data = loadmat('BFM/BFM09_model_info.mat') File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 224, in loadmat with _open_file_context(file_name, appendmat) as f: File "/root/anaconda3/envs/pytorch3d/lib/python3.8/contextlib.py", line 113, in enter return next(self.gen) File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 17, in _open_file_context f, opened = _open_file(file_like, appendmat, mode) File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 45, in _open_file return open(file_like, mode), True FileNotFoundError: [Errno 2] No such file or directory: 'BFM/BFM09_model_info.mat'

    In 3DMMfitting-pytorch, there are only these files: BFM_exp_idx.mat BFM_front_idx.mat facemodel_info.mat README.md select_vertex_id.mat similarity_Lm3D_all.mat std_exp.txt

    opened by 675492062 2
  • What is the expected time needed for running demo_nicp.py?

    What is the expected time needed for running demo_nicp.py?

    Hello,

    On my computer it seems quite slow to run demo_nicp.py. At least it took more than 1 minutes to get final.obj. Is it correct?

    I ranAMM_NRR for non-rigit ICP registration with two 7000 vertices meshes. It needs ca 1 second with CPU on my computer. With GPU, it might be possible to do the same work in less than 100 ms?

    Thank you!

    opened by 1939938853 0
  • Hi, with landmarks: `landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()`, maybe you can  reshape landmarks from torch.Size([1, 1, 68, 2]) to  torch.Size([1, 68, 2])

    Hi, with landmarks: `landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()`, maybe you can reshape landmarks from torch.Size([1, 1, 68, 2]) to torch.Size([1, 68, 2])

    Hi, with landmarks: landmarks = torch.from_numpy(np.array(landmarks)).to(device).long(), maybe you can reshape landmarks from torch.Size([1, 1, 68, 2]) to torch.Size([1, 68, 2])

    Originally posted by @wuhaozhe in https://github.com/wuhaozhe/pytorch-nicp/issues/3#issuecomment-971453681 hi!I got output as torch.Size([1, 68, 512, 3]) torch.Size([1, 68, 2]) torch.Size([1, 512, 512, 3]) I think the shape of following tensors are right, but I meet the same problem. lm_vertex = torch.gather(lm_vertex, 2, column_index) RuntimeError: CUDA error: device-side assert triggered

    landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()
    
    row_index = landmarks[:, :, 1].view(landmarks.shape[0], -1)
    column_index = landmarks[:, :, 0].view(landmarks.shape[0], -1)
    row_index = row_index.unsqueeze(2).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], shape_img.shape[2], shape_img.shape[3])
    column_index = column_index.unsqueeze(1).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], landmarks.shape[1], shape_img.shape[3])
    print(row_index.shape, landmarks.shape, shape_img.shape)
    
    opened by alicedingyueming 1
  • RuntimeError

    RuntimeError

    Traceback (most recent call last): File "demo_nicp.py", line 27, in target_lm_index, lm_mask = get_mesh_landmark(norm_meshes, dummy_render) File "/data/pytorch-nicp/landmark.py", line 37, in get_mesh_landmark row_index = row_index.unsqueeze(2).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], shape_img.shape[2], shape_img.shape[3]) RuntimeError: The expanded size of the tensor (1) must match the existing size (2) at non-singleton dimension 1. Target sizes: [1, 1, 512, 3]. Tensor sizes: [1, 2, 1, 1]

    I have already configure the environment,but it seems have some problems in the code.What can I do to solve this problem.

    opened by 675492062 8
Releases(v0.1)
Owner
Haozhe Wu
Research interests in Computer Vision and Machine Learning.
Haozhe Wu
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022