Hierarchical Uniform Manifold Approximation and Projection

Overview

pypi_version pypi_downloads

HUMAP exploration on Fashion MNIST dataset

HUMAP

Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HUMAP allows to:

  1. Focus on important information while reducing the visual burden when exploring whole datasets;
  2. Drill-down the hierarchy according to information demand.

The details of the algorithm can be found in our paper on ArXiv.

Installation

HUMAP was written in C++ for performance purposes, and it has an intuitive Python interface. It depends upon common machine learning libraries, such as scikit-learn and NumPy. It also needs the pybind11 due to the interface between C++ and Python.

Requirements:

  • Python 3.6 or greater
  • numpy
  • scipy
  • scikit-learn
  • pybind11
  • Eigen (C++)

If you have these requirements installed, use PyPI:

pip install humap

For Windows users:

The Eigen library does not have to be installed. Just add the files to C:Eigen or use the manual installation to change Eigen location.

Manual installation:

For manually installing HUMAP, download the project and proceed as follows:

python setup.py bdist_wheel
pip install dist/humap*.whl

Usage examples

HUMAP package follows the same idea of sklearn classes, in which you need to fit and transform data.

Fitting the hierarchy

import humap
from sklearn.datasets import fetch_openml


X, y = fetch_openml('mnist_784', version=1, return_X_y=True)

hUmap = humap.HUMAP()
hUmap.fit(X, y)

HUMAP embedding of top-level MNIST digits

By now, you can control six parameters related to the hierarchy construction and the embedding performed by UMAP.

  • levels: Controls the number of hierarchical levels + the first one (whole dataset). This parameter also controls how many data points are in each hierarchical level. The default is [0.2, 0.2], meaning the HUMAP will produce three levels: The first one with the whole dataset, the second one with 20% of the first level, and the third with 20% of the second level.
  • n_neighbors: This parameter controls the number of neighbors for approximating the manifold structures. Larger values produce embedding that preserves more of the global relations. In HUMAP, we recommend and set the default value to be 100.
  • min_dist: This parameter, used in UMAP dimensionality reduction, controls the allowance to cluster data points together. According to UMAP documentation, larger values allow evenly distributed embeddings, while smaller values encode the local structures better. We set this parameter as 0.15 as default.
  • knn_algorithm: Controls which knn approximation will be used, in which NNDescent is the default. Another option is ANNOY or FLANN if you have Python installations of these algorithms at the expense of slower run-time executions than NNDescent.
  • init: Controls the method for initing the low-dimensional representation. We set Spectral as default since it yields better global structure preservation. You can also use random initialization.
  • verbose: Controls the verbosity of the algorithm.

Embedding a hierarchical level

After fitting the dataset, you can generate the embedding for a hierarchical level by specifying the level.

embedding_l2 = hUmap.transform(2)
y_l2 = hUmap.labels(2)

Notice that the .labels() method only works for levels equal or greater than one.

Drilling down the hierarchy by embedding a subset of data points based on indices

Embedding data subsets throughout HUMAP hierarchy

When interested in a set of data samples, HUMAP allows for drilling down the hierarchy for those samples.

embedding, y, indices = hUmap.transform(2, indices=indices_of_interest)

This method returns the embedding coordinates, the labels (y), and the data points' indices in the current level. Notice that the current level is now level 1 since we used the hierarchy level 2 for drilling down operation.

Drilling down the hierarchy by embedding a subset of data points based on labels

You can apply the same concept as above to embed data points based on labels.

embedding, y, indices = hUmap.transform(2, indices=np.array([4, 9]), class_based=True)

C++ UMAP implementation

You can also fit a one-level HUMAP hierarchy, which essentially corresponds to a UMAP projection.

umap_reducer = humap.HUMAP(np.array([]))
umap_reducer.fit(X, y)

embedding = umap_reducer.transform(0)

Citation

Please, use the following reference to cite HUMAP in your work:

@misc{marciliojr_humap2021,
  title={HUMAP: Hierarchical Uniform Manifold Approximation and Projection},
  author={Wilson E. Marcílio-Jr and Danilo M. Eler and Fernando V. Paulovich and Rafael M. Martins},
  year={2021},
  eprint={2106.07718},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
    }

License

HUMAP follows the 3-clause BSD license and it uses the open-source NNDescent implementation from EFANNA. It also uses a C++ implementation of UMAP for embedding hierarchy levels; this project would not be possible without UMAP's fantastic technique and package.

E-mail me (wilson_jr at outlook.com) if you like to contribute.


You might also like...
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Curved Projection Reformation
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

Implementation of
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

my graduation project is about live human face augmentation by projection mapping by using CNN
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

A Pytorch implementation of
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Comments
  • [Packaging] Requesting conda-forge package

    [Packaging] Requesting conda-forge package

    Hi,

    Just putting it out there that you might want to consider putting up your package on conda-forge. Many other packages like numpy, scikit-learn, umap, are all available on conda-forge, and managing them through conda cli makes it easy to be up-to-date and not worry about dependencies like MKL, which pip doesn't handle well.

    As a bonus, I see that this package depends on Eigen, which needs to be manually configured on Windows. Conda-forge already has eigen available, which might make this much less error-prone for Windows users, which I assume will be a substantial chunk.

    Just as an FYI, here is a link for conda-forge submission process.

    Thanks!

    opened by stallam-unb 6
  • RuntimeError: Some rows contain fewer than n_neighbors distances

    RuntimeError: Some rows contain fewer than n_neighbors distances

    Problems when computing hierarchy for small datasets. I tried to execute HUMAP on Iris dataset using 100, 15, and 10 n_neighbors.

    RuntimeError: Some rows contain fewer than n_neighbors distances

    opened by wilsonjr 1
  • Transform with new data?

    Transform with new data?

    Semi-related to #4 , but my case is that I want to use HUMAP on a supervised data where I have a training data with labels, and I want to be able to project new test data with the same embeddings. UMAP supports this use case, I was wondering if this would be theoretically possible with HUMAP as well? Would be nice to be able to use HUMAP to interpret classifier decisions.

    opened by stallam-unb 0
  • Semi-supervised learning?

    Semi-supervised learning?

    Thanks for writing this awesome library, only recently discovered it. Do you have plans to support semi-supervised umap? From my first try outs of your library, this is the fastest (h)umap implementation which has nndescent. I would like to use it for semi-supervised learning, too.

    enhancement 
    opened by KnutJaegersberg 6
Releases(v0.2.1)
Owner
Wilson Estécio Marcílio Júnior
PhD Candidate in Computer Science. Interested in ML and Explainability.
Wilson Estécio Marcílio Júnior
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022