SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

Overview

SSL_SLAM2

Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example)

This repo is an extension work of SSL_SLAM. Similar to RTABMAP, SSL_SLAM2 separates the mapping module and localization module. Map saving and map optimization is enabled in the mapping unit. Map loading and localization is enabled in the localziation unit.

This code is an implementation of paper "Lightweight 3-D Localization and Mapping for Solid-State LiDAR", published in IEEE Robotics and Automation Letters, 2021 paper

A summary video demo can be found at Video

Modifier: Wang Han, Nanyang Technological University, Singapore

Running speed: 20 Hz on Intel NUC, 30 Hz on PC

1. Solid-State Lidar Sensor Example

1.1 Scene reconstruction example

1.2 Localization with built map

1.3 Comparison

2. Prerequisites

2.1 Ubuntu and ROS

Ubuntu 64-bit 18.04.

ROS Melodic. ROS Installation

2.2. Ceres Solver

Follow Ceres Installation.

2.3. PCL

Follow PCL Installation.

Tested with 1.8.1

2.4. GTSAM

Follow GTSAM Installation.

2.5. Trajectory visualization

For visualization purpose, this package uses hector trajectory sever, you may install the package by

sudo apt-get install ros-melodic-hector-trajectory-server

Alternatively, you may remove the hector trajectory server node if trajectory visualization is not needed

3. Sensor Setup

If you have new Realsense L515 sensor, you may follow the below setup instructions

3.1 L515

3.2 Librealsense

Follow Librealsense Installation

3.3 Realsense_ros

Copy realsense_ros package to your catkin folder

    cd ~/catkin_ws/src
    git clone https://github.com/IntelRealSense/realsense-ros.git
    cd ..
    catkin_make

4. Build SSL_SLAM2

4.1 Clone repository:

    cd ~/catkin_ws/src
    git clone https://github.com/wh200720041/ssl_slam2.git
    cd ..
    catkin_make
    source ~/catkin_ws/devel/setup.bash

4.2 Download test rosbag

You may download our recorded data: MappingTest.bag (3G) and LocalizationTest.bag (6G)if you dont have realsense L515, and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LocalizationTest.zip
unzip MappingTest.zip

4.3 Map Building

map optimization and building

    roslaunch ssl_slam2 ssl_slam2_mapping.launch

The map optimization is performed based on loop closure, you have to specify the loop clousre manually in order to trigger global optimization. To save map, open a new terminal and

  rosservice call /save_map

Upon calling the serviece, the map will be automatically saved. It is recommended to have a loop closure to reduce the drifts. Once the service is called, loop closure will be checked. For example, in the rosbag provided, the loop closure appears at frame 1060-1120, thus, when you see "total_frame 1070" or "total_frame 1110" you may immediately type

  rosservice call /save_map

Since the current frame is between 1060 and 1120, the loop closure will be triggered automatically and the global map will be optimized and saved

4.4 Localization

Type

    roslaunch ssl_slam2 ssl_slam2_localization.launch

If your map is large, it may takes a while to load

4.5 Parameters Explanation

The map size depends on number of keyframes used. The more keyframes used for map buildin, the larger map will be.

min_map_update_distance: distance threshold to add a keyframe. higher means lower update rate. min_map_update_angle: angle threshold to add a keyframe. higher means lower update rate. min_map_update_frame: time threshold to add a keyframe. higher means lower update rate.

4.6 Relocalization

The relocalization module under tracking loss is still under development. You must specify the robot init pose w.r.t. the map coordinate if the starting position is not the origin of map. You can set this by

    <param name="offset_x" type="double" value="0.0" />
    <param name="offset_y" type="double" value="0.0" />
    <param name="offset_yaw" type="double" value="0.0" />

4.7 Running speed

The realsense is running at 30Hz and some computer may not be able to support such high processing rate. You may reduce the processing rate by skipping frames. You can do thid by setting the

<param name="skip_frames" type="int" value="1" />

1 implies no skip frames, i.e., 30Hz; implies skip 1 frames, i.e., 15Hz. For small map building, you can do it online. however, it is recommended to record a rosbag and build map offline for large mapping since the dense map cannot be generated in real-time.

5 Map Building with multiple loop closure places

5.1 Dataset

You may download a larger dataset LargeMappingTest.bag (10G), and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LargeMappingTest.zip

5.2 Map Building

Two loop closure places appear at frame 0-1260 and 1270-3630, i.e., frame 0 and frame 1260 are the same place, frame 1270 adn 3630 are the same place. Run

    roslaunch ssl_slam2 ssl_slam2_large_mapping.launch

open a new terminal, when you see "total_frame 1260", immediately type

  rosservice call /save_map

when you see "total_frame 3630", immediately type again

  rosservice call /save_map

6. Citation

If you use this work for your research, you may want to cite the paper below, your citation will be appreciated

@article{wang2021lightweight,
  author={H. {Wang} and C. {Wang} and L. {Xie}},
  journal={IEEE Robotics and Automation Letters}, 
  title={Lightweight 3-D Localization and Mapping for Solid-State LiDAR}, 
  year={2021},
  volume={6},
  number={2},
  pages={1801-1807},
  doi={10.1109/LRA.2021.3060392}}
Owner
Wang Han 王晗
I am currently a Phd Candidate at Nanyang Technological University, Singapore, specialize in computer vision and robotics
Wang Han 王晗
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022