Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

Related tags

Deep LearningREDQ
Overview

REDQ source code

Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05982

Mar 23, 2021: We have reorganized the code to make it cleaner and more readable and the first version is now released!

Mar 29, 2021: We tested the installation process and run the code, and everything seems to be working correctly. We are now working on the implementation video tutorial, which will be released soon.

May 3, 2021: We uploaded a video tutorial (shared via google drive), please see link below. Hope it helps!

Code for REDQ-OFE is still being cleaned up and will be released soon (essentially the same code but with additional input from a OFENet).

Code structure explained

The code structure is pretty simple and should be easy to follow.

In experiments/train_redq_sac.py you will find the main training loop. Here we set up the environment, initialize an instance of the REDQSACAgent class, specifying all the hyperparameters and train the agent. You can run this file to train a REDQ agent.

In redq/algos/redq_sac.py we provide code for the REDQSACAgent class. If you are trying to take a look at how the core components of REDQ are implemented, the most important function is the train() function.

In redq/algos/core.py we provide code for some basic classes (Q network, policy network, replay buffer) and some helper functions. These classes and functions are used by the REDQ agent class.

In redq/utils there are some utility classes (such as a logger) and helper functions that mostly have nothing to do with REDQ's core components.

Implementation video tutorial

Here is the link to a video tutorial we created that explains the REDQ implementation in detail:

REDQ code explained video tutorial (Google Drive Link)

Environment setup

Note: you don't need to exactly follow the tutorial here if you know well about how to install python packages.

First create a conda environment and activate it:

conda create -n redq python=3.6
conda activate redq 

Install PyTorch (or you can follow the tutorial on PyTorch official website). On Ubuntu (might also work on Windows but is not fully tested):

conda install pytorch==1.3.1 torchvision==0.4.2 cudatoolkit=10.1 -c pytorch

On OSX:

conda install pytorch==1.3.1 torchvision==0.4.2 -c pytorch

Install gym (0.17.2):

git clone https://github.com/openai/gym.git
cd gym
git checkout b2727d6
pip install -e .
cd ..

Install mujoco_py (2.0.2.1):

git clone https://github.com/openai/mujoco-py
cd mujoco-py
git checkout 379bb19
pip install -e . --no-cache
cd ..

For gym and mujoco_py, depending on your system, you might need to install some other packages, if you run into such problems, please refer to their official sites for guidance. If you want to test on Mujoco environments, you will also need to get Mujoco files and license from Mujoco website. Please refer to the Mujoco website for how to do this correctly.

Clone and install this repository (Although even if you don't install it you might still be able to use the code):

git clone https://github.com/watchernyu/REDQ.git
cd REDQ
pip install -e .

Train an REDQ agent

To train an REDQ agent, run:

python experiments/train_redq_sac.py

On a 2080Ti GPU, running Hopper to 125K will approximately take 10-12 hours. Running Humanoid to 300K will approximately take 26 hours.

Implement REDQ

If you intend to implement REDQ on your codebase, please refer to the paper and the tutorial (to be released) for guidance. In particular, in Appendix B of the paper, we discussed hyperparameters and some additional implementation details. One important detail is in the beginning of the training, for the first 5000 data points, we sample random action from the action space and do not perform any updates. If you perform a large number of updates with a very small amount of data, it can lead to severe bias accumulation and can negatively affect the performance.

For REDQ-OFE, as mentioned in the paper, for some reason adding PyTorch batch norm to OFENet will lead to divergence. So in the end we did not use batch norm in our code.

Reproduce the results

If you use a different PyTorch version, it might still work, however, it might be better if your version is close to the ones we used. We have found that for example, on Ant environment, PyTorch 1.3 and 1.2 give quite different results. The reason is not entirely clear.

Other factors such as versions of other packages (for example numpy) or environment (mujoco/gym) or even types of hardware (cpu/gpu) can also affect the final results. Thus reproducing exactly the same results can be difficult. However, if the package versions are the same, when averaged over a large number of random seeds, the overall performance should be similar to those reported in the paper.

As of Mar. 29, 2021, we have used the installation guide on this page to re-setup a conda environment and run the code hosted on this repo and the reproduced results are similar to what we have in the paper (though not exactly the same, in some environments, performance are a bit stronger and others a bit weaker).

Please open an issue if you find any problems in the code, thanks!

Acknowledgement

Our code for REDQ-SAC is partly based on the SAC implementation in OpenAI Spinup (https://github.com/openai/spinningup). The current code structure is inspired by the super clean TD3 source code by Scott Fujimoto (https://github.com/sfujim/TD3).

Owner
Ph.D. student at NYU. Deep reinforcement learning researcher.
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022