A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

Overview

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network

The official code of VisionLAN (ICCV2021). VisionLAN successfully achieves the transformation from two-step to one-step recognition (from Two to One), which adaptively considers both visual and linguistic information in a unified structure without the need of extra language model.

ToDo List

  • Release code
  • Document for Installation
  • Trained models
  • Document for testing and training
  • Evaluation
  • re-organize and clean the parameters

Updates

2021/10/9 We upload the code, datasets, and trained models.
2021/10/9 Fix a bug in cfs_LF_1.py.

Requirements

Python2.7
Colour
LMDB
Pillow
opencv-python
torch==1.3.0
torchvision==0.4.1
editdistance
matplotlib==2.2.5

Step-by-step install

pip install -r requirements.txt

Data preparing

Training sets

SynthText We use the tool to crop images from original SynthText dataset, and convert images into LMDB dataset.

MJSynth We use tool to convert images into LMDB dataset. (We only use training set in this implementation)

We have upload these LMDB datasets in RuiKe (password:x6si).

Testing sets

Evaluation datasets, LMDB datasets can be downloaded from BaiduYun (password:fjyy) or RuiKe

IIIT5K Words (IIIT5K)
ICDAR 2013 (IC13)
Street View Text (SVT)
ICDAR 2015 (IC15)
Street View Text-Perspective (SVTP)
CUTE80 (CUTE)

The structure of data directory is

datasets
├── evaluation
│   ├── Sumof6benchmarks
│   ├── CUTE
│   ├── IC13
│   ├── IC15
│   ├── IIIT5K
│   ├── SVT
│   └── SVTP
└── train
    ├── MJSynth
    └── SynthText

Evaluation

Results on 6 benchmarks

Methods IIIT5K IC13 SVT IC15 SVTP CUTE
Paper 95.8 95.7 91.7 83.7 86.0 88.5
This implementation 95.9 96.3 90.7 84.1 85.3 88.9

Download our trained model in BaiduYun (password: e3kj) or RuiKe (password: cxqi), and put it in output/LA/final.pth.

CUDA_VISIBLE_DEVICES=0 python eval.py

Visualize character-wise mask map

Examples of the visualization of mask_c: image

   CUDA_VISIBLE_DEVICES=0 python visualize.py

You can modify the 'mask_id' in cfgs/cfgs_visualize to change the mask position for visualization.

Results on OST datasets

Occlusion Scene Text (OST) dataset is proposed to reflect the ability for recognizing cases with missing visual cues. This dataset is collected from 6 benchmarks (IC13, IC15, IIIT5K, SVT, SVTP and CT) containing 4832 images. Images in this dataset are manually occluded in weak or heavy degree. Weak and heavy degrees mean that we occlude the character using one or two lines. For each image, we randomly choose one degree to only cover one character.

Examples of images in OST dataset: image image

Methods Average Weak Heavy
Paper 60.3 70.3 50.3
This implementation 60.3 70.8 49.8

The LMDB dataset is available in BaiduYun (password:yrrj) or RuiKe (password: vmzr)

Training

4 2080Ti GPUs are used in this implementation.

Language-free (LF) process

Step 1: We first train the vision model without MLM. (Our trained LF_1 model(BaiduYun) (password:avs5) or RuiKe (password:qwzn))

   CUDA_VISIBLE_DEVICES=0,1,2,3 python train_LF_1.py

Step 2: We finetune the MLM with vision model (Our trained LF_2 model(BaiduYun) (password:04jg) or RuiKe (password:v67q))

   CUDA_VISIBLE_DEVICES=0,1,2,3 python train_LF_2.py

Language-aware (LA) process

Use the mask map to guide the linguistic learning in the vision model.

   CUDA_VISIBLE_DEVICES=0,1,2,3 python train_LA.py

Tip: In LA process, model with loss (Loss VisionLAN) higher than 0.3 and the training accuracy (Accuracy) lower than 91.0 after the first 200 training iters obains better performance.

Improvement

  1. Mask id randomly generated according to the max length can not well adapt to the occlusion of long text. Thus, evenly sampled mask id can further improve the performance of MLM.
  2. Heavier vision model is able to capture more robust linguistic information in our later experiments.

Citation

If you find our method useful for your reserach, please cite

 @article{wang2021two,
  title={From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network},
  author={Wang, Yuxin and Xie, Hongtao and Fang, Shancheng and Wang, Jing and Zhu, Shenggao and Zhang, Yongdong},
  journal={ICCV},
  year={2021}
}

Feedback

Suggestions and discussions are greatly welcome. Please contact the authors by sending email to [email protected]

Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022