A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

Overview

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network

The official code of VisionLAN (ICCV2021). VisionLAN successfully achieves the transformation from two-step to one-step recognition (from Two to One), which adaptively considers both visual and linguistic information in a unified structure without the need of extra language model.

ToDo List

  • Release code
  • Document for Installation
  • Trained models
  • Document for testing and training
  • Evaluation
  • re-organize and clean the parameters

Updates

2021/10/9 We upload the code, datasets, and trained models.
2021/10/9 Fix a bug in cfs_LF_1.py.

Requirements

Python2.7
Colour
LMDB
Pillow
opencv-python
torch==1.3.0
torchvision==0.4.1
editdistance
matplotlib==2.2.5

Step-by-step install

pip install -r requirements.txt

Data preparing

Training sets

SynthText We use the tool to crop images from original SynthText dataset, and convert images into LMDB dataset.

MJSynth We use tool to convert images into LMDB dataset. (We only use training set in this implementation)

We have upload these LMDB datasets in RuiKe (password:x6si).

Testing sets

Evaluation datasets, LMDB datasets can be downloaded from BaiduYun (password:fjyy) or RuiKe

IIIT5K Words (IIIT5K)
ICDAR 2013 (IC13)
Street View Text (SVT)
ICDAR 2015 (IC15)
Street View Text-Perspective (SVTP)
CUTE80 (CUTE)

The structure of data directory is

datasets
├── evaluation
│   ├── Sumof6benchmarks
│   ├── CUTE
│   ├── IC13
│   ├── IC15
│   ├── IIIT5K
│   ├── SVT
│   └── SVTP
└── train
    ├── MJSynth
    └── SynthText

Evaluation

Results on 6 benchmarks

Methods IIIT5K IC13 SVT IC15 SVTP CUTE
Paper 95.8 95.7 91.7 83.7 86.0 88.5
This implementation 95.9 96.3 90.7 84.1 85.3 88.9

Download our trained model in BaiduYun (password: e3kj) or RuiKe (password: cxqi), and put it in output/LA/final.pth.

CUDA_VISIBLE_DEVICES=0 python eval.py

Visualize character-wise mask map

Examples of the visualization of mask_c: image

   CUDA_VISIBLE_DEVICES=0 python visualize.py

You can modify the 'mask_id' in cfgs/cfgs_visualize to change the mask position for visualization.

Results on OST datasets

Occlusion Scene Text (OST) dataset is proposed to reflect the ability for recognizing cases with missing visual cues. This dataset is collected from 6 benchmarks (IC13, IC15, IIIT5K, SVT, SVTP and CT) containing 4832 images. Images in this dataset are manually occluded in weak or heavy degree. Weak and heavy degrees mean that we occlude the character using one or two lines. For each image, we randomly choose one degree to only cover one character.

Examples of images in OST dataset: image image

Methods Average Weak Heavy
Paper 60.3 70.3 50.3
This implementation 60.3 70.8 49.8

The LMDB dataset is available in BaiduYun (password:yrrj) or RuiKe (password: vmzr)

Training

4 2080Ti GPUs are used in this implementation.

Language-free (LF) process

Step 1: We first train the vision model without MLM. (Our trained LF_1 model(BaiduYun) (password:avs5) or RuiKe (password:qwzn))

   CUDA_VISIBLE_DEVICES=0,1,2,3 python train_LF_1.py

Step 2: We finetune the MLM with vision model (Our trained LF_2 model(BaiduYun) (password:04jg) or RuiKe (password:v67q))

   CUDA_VISIBLE_DEVICES=0,1,2,3 python train_LF_2.py

Language-aware (LA) process

Use the mask map to guide the linguistic learning in the vision model.

   CUDA_VISIBLE_DEVICES=0,1,2,3 python train_LA.py

Tip: In LA process, model with loss (Loss VisionLAN) higher than 0.3 and the training accuracy (Accuracy) lower than 91.0 after the first 200 training iters obains better performance.

Improvement

  1. Mask id randomly generated according to the max length can not well adapt to the occlusion of long text. Thus, evenly sampled mask id can further improve the performance of MLM.
  2. Heavier vision model is able to capture more robust linguistic information in our later experiments.

Citation

If you find our method useful for your reserach, please cite

 @article{wang2021two,
  title={From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network},
  author={Wang, Yuxin and Xie, Hongtao and Fang, Shancheng and Wang, Jing and Zhu, Shenggao and Zhang, Yongdong},
  journal={ICCV},
  year={2021}
}

Feedback

Suggestions and discussions are greatly welcome. Please contact the authors by sending email to [email protected]

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022