Image morphing without reference points by applying warp maps and optimizing over them.

Overview

Differentiable Morphing

Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing is machine learning algorithm that can morph any two images without reference points. It called "differentiable morphing" because neural network here is not used in traditional data to label mapping sense, but as an easy way to solve optimization problem where one image is mapped to another via warp maps that are found by gradient descent. So after maps are found there is no need for the network itself.

Results

example 1 example 2 example 3

Dependencies

Tensorflow 2.1.3 and above.

Usage

Install proper dependencies:

pip install -r requirements.txt

Use the program:

morph.py -s images/img_1.jpg -t images/img_2.jpg

-s Source file
-t Target file

Unnecessary parameters:
-e Number of epochs to train maps on training stage
-a Addition map multiplier
-m Multiplication map multiplier
-w Warp map multiplier
-add_first If true add map would be applied to the source image before mult map. (might work better in some cases)

Idea

Suppose we want to produce one image from another in a way that we use as much useful information as possible, so if two given images share any similarities between them we make use of these similarities.

toy_example

After several trials I found out that the best way to achieve such effect is to use following formula.

formula

Here "Mult map" removes unnecessary parts of an image and shifts color balance, "Add map" creates new colors that are not present in original image and "Warp map" distort an image in some way to reproduce shifting, rotation and scaling of objects. W operation is dense_image_warp method that present in tensorflow and usually used for optical flow estimation tasks.

All maps are found by gradient descent using very simple convolution network. Now, by applying alpha scaling parameter to every map we will get smooth transition from one image to another without any loss of useful data (at least for the given toy example).

transition

Thoughts

Notice that all maps produced generate somewhat meaningful interpolation without any understanding of what exactly present in the images. That means that warp operation might be very useful in images processing tasks. In some sense warp operation might be thought as long range convolution, because it can "grab" data from any point of an image and reshape it in some useful way. Therefore it might be beneficial to use warp operation in classification tasks and might allow networks be less susceptible to small perturbations of the data. But especially, it should be beneficial to use in generation task. It should be much easier to produce new data by combining and perturbating several examples of known data points than to learn a function that represents all data points at ones.

Owner
Alex K
Russian self-taught programmer. Interested in art, procedural generation and generative AI.
Alex K
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022