Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Overview

Differential Privacy (DP) Based Federated Learning (FL)

Everything about DP-based FL you need is here.

(所有你需要的DP-based FL的信息都在这里)

Code

Tip: the code of this repository is my personal implementation, if there is an inaccurate place please contact me, welcome to discuss with each other. The FL code of this repository is based on this repository .I hope you like it and support it. Welcome to submit PR to improve the repository.

(提示:本仓库的代码均为本人个人实现,如有不准确的地方请联系本人,欢迎互相讨论。 本仓库的FL代码是基于 这个仓库 实现的,希望大家都能点赞多多支持,欢迎大家提交PR完善,谢谢! )

Note that in order to ensure that each client is selected a fixed number of times (to compute privacy budget each time the client is selected), this code uses round-robin client selection, which means that each client is selected sequentially.

(注意,为了保证每个客户端被选中的次数是固定的(为了计算机每一次消耗的隐私预算),本代码使用了Round-robin的选择客户端机制,也就是说每个client是都是被顺序选择的。 )

Important note: The number of FL local update rounds used in this code is all 1, please do not change, once the number of local iteration rounds is changed, the sensitivity in DP needs to be recalculated, the upper bound of sensitivity will be a large value, and the privacy budget consumed in each round will become a lot, so please use the parameter setting of Local epoch = 1.

(重要提示:本代码使用的FL本地更新轮数均为1,请勿更改,一旦更改本地迭代轮数,DP中的敏感度需要重新计算,敏感度上界会是一个很大的值,每一轮消耗的隐私预算会变得很多,所以请使用local epoch = 1的参数设置。)

Parameter List

Datasets: MNIST, Cifar-10, FEMNIST, Fashion-MNIST, Shakespeare.

Model: CNN, MLP, LSTM for Shakespeare

DP Mechanism: Laplace, Gaussian(Simple Composition), Todo: Gaussian(moments accountant)

DP Parameter: $\epsilon$ and $\delta$

DP Clip: In DP-based FL, we usually clip the gradients in training and the clip is an important parameter to calculate the sensitivity.

No DP

You can run like this:

python main.py --dataset mnist --iid --model cnn --epochs 50 --dp_mechanism no_dp

Laplace Mechanism

This code is based on Simple Composition in DP. In other words, if a client's privacy budget is $\epsilon$ and the client is selected $T$ times, the client's budget for each noising is $\epsilon / T$.

(该代码是基于Simple Composition的,也就是说,如果某个客户端的隐私预算是$\epsilon$,这个客户端被选中$T$次的话,那么该客户端每次加噪使用的预算为$\epsilon / T$ )

You can run like this:

python main.py --dataset mnist --iid --model cnn --epochs 50 --dp_mechanism Laplace --dp_epsilon 10 --dp_clip 10

Gaussian Mechanism

Simple Composition

The same as Laplace Mechanism.

You can run like this:

python main.py --dataset mnist --iid --model cnn --epochs 50 --dp_mechanism Gaussian --dp_epsilon 10 --dp_delta 1e-5 --dp_clip 10

Moments Accountant

See the paper for detailed mechanism.

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.

To do...

Papers

  • Reviews
    • Rodríguez-Barroso, Nuria, et al. "Federated Learning and Differential Privacy: Software tools analysis, the Sherpa. ai FL framework and methodological guidelines for preserving data privacy." Information Fusion 64 (2020): 270-292.
  • Gaussian Mechanism
    • Wei, Kang, et al. "Federated learning with differential privacy: Algorithms and performance analysis." IEEE Transactions on Information Forensics and Security 15 (2020): 3454-3469.
    • Geyer, Robin C., Tassilo Klein, and Moin Nabi. "Differentially private federated learning: A client level perspective." arXiv preprint arXiv:1712.07557 (2017).
    • Seif, Mohamed, Ravi Tandon, and Ming Li. "Wireless federated learning with local differential privacy." 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020.
    • Naseri, Mohammad, Jamie Hayes, and Emiliano De Cristofaro. "Toward robustness and privacy in federated learning: Experimenting with local and central differential privacy." arXiv e-prints (2020): arXiv-2009.
    • Truex, Stacey, et al. "A hybrid approach to privacy-preserving federated learning." Proceedings of the 12th ACM workshop on artificial intelligence and security. 2019.
    • Triastcyn, Aleksei, and Boi Faltings. "Federated learning with bayesian differential privacy." 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019.
  • Laplace Mechanism
    • Wu, Nan, et al. "The value of collaboration in convex machine learning with differential privacy." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.
    • Olowononi, Felix O., Danda B. Rawat, and Chunmei Liu. "Federated learning with differential privacy for resilient vehicular cyber physical systems." 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2021.
  • Other Mechanism
    • Sun, Lichao, Jianwei Qian, and Xun Chen. "Ldp-fl: Practical private aggregation in federated learning with local differential privacy." arXiv preprint arXiv:2007.15789 (2020).
    • Liu, Ruixuan, et al. "Fedsel: Federated sgd under local differential privacy with top-k dimension selection." International Conference on Database Systems for Advanced Applications. Springer, Cham, 2020.
    • Truex, Stacey, et al. "LDP-Fed: Federated learning with local differential privacy." Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking. 2020.
    • Zhao, Yang, et al. "Local differential privacy-based federated learning for internet of things." IEEE Internet of Things Journal 8.11 (2020): 8836-8853.
Owner
wenzhu
Student Major in Computer Science
wenzhu
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021