Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

Overview

HiFi-GAN+

This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All You Need by Jiaqi Su, Yunyun Wang, Adam Finkelstein, and Zeyu Jin.

The model takes a band-limited audio signal (usually 8/16/24kHz) and attempts to reconstruct the high frequency components needed to restore a full-band signal at 48kHz. This is useful for upsampling low-rate outputs from upstream tasks like text-to-speech, voice conversion, etc. or enhancing audio that was filtered to remove high frequency noise. For more information, please see this blog post.

Status

PyPI Tests Coveralls DOI

Wandb Gradio Colab

Usage

The example below uses a pretrained HiFi-GAN+ model to upsample a 1 second 24kHz sawtooth to 48kHz.

import torch
from hifi_gan_bwe import BandwidthExtender

model = BandwidthExtender.from_pretrained("hifi-gan-bwe-10-42890e3-vctk-48kHz")

fs = 24000
x = torch.full([fs], 261.63 / fs).cumsum(-1) % 1.0 - 0.5
y = model(x, fs)

There is a Gradio demo on HugggingFace Spaces where you can upload audio clips and run the model. You can also run the model on Colab with this notebook.

Running with pipx

The HiFi-GAN+ library can be run directly from PyPI if you have the pipx application installed. The following script uses a hosted pretrained model to upsample an MP3 file to 48kHz. The input audio can be in any format supported by the audioread library, and the output can be in any format supported by soundfile.

pipx run --python=python3.9 hifi-gan-bwe \
  hifi-gan-bwe-10-42890e3-vctk-48kHz \
  input.mp3 \
  output.wav

Running in a Virtual Environment

If you have a Python 3.9 virtual environment installed, you can install the HiFi-GAN+ library into it and run synthesis, training, etc. using it.

pip install hifi-gan-bwe

hifi-synth hifi-gan-bwe-10-42890e3-vctk-48kHz input.mp3 output.wav

Pretrained Models

The following models can be loaded with BandwidthExtender.from_pretrained and used for audio upsampling. You can also download the model file from the link and use it offline.

Name Sample Rate Parameters Wandb Metrics Notes
hifi-gan-bwe-10-42890e3-vctk-48kHz 48kHz 1M bwe-10-42890e3 Same as bwe-05, but uses bandlimited interpolation for upsampling, for reduced noise and aliasing. Uses the same parameters as resampy's kaiser_best mode.
hifi-gan-bwe-11-d5f542d-vctk-8kHz-48kHz 48kHz 1M bwe-11-d5f542d Same as bwe-10, but trained only on 8kHz sources, for specialized upsampling.
hifi-gan-bwe-12-b086d8b-vctk-16kHz-48kHz 48kHz 1M bwe-12-b086d8b Same as bwe-10, but trained only on 16kHz sources, for specialized upsampling.
hifi-gan-bwe-13-59f00ca-vctk-24kHz-48kHz 48kHz 1M bwe-13-59f00ca Same as bwe-10, but trained only on 24kHz sources, for specialized upsampling.
hifi-gan-bwe-05-cd9f4ca-vctk-48kHz 48kHz 1M bwe-05-cd9f4ca Trained for 200K iterations on the VCTK speech dataset with noise agumentation from the DNS Challenge dataset.

Training

If you want to train your own model, you can use any of the methods above to install/run the library or fork the repo and run the script commands locally. The following commands are supported:

Name Description
hifi-train Starts a new training run, pass in a name for the run.
hifi-clone Clone an existing training run at a given or the latest checkpoint.
hifi-export Optimize a model for inference and export it to a PyTorch model file (.pt).
hifi-synth Run model inference using a trained model on a source audio file.

For example, you might start a new training run called bwe-01 with the following command:

hifi-train 01

To train a model, you will first need to download the VCTK and DNS Challenge datasets. By default, these datasets are assumed to be in the ./data/vctk and ./data/dns directories. See train.py for how to specify your own training data directories. If you want to use a custom training dataset, you can implement a dataset wrapper in datasets.py.

The training scripts use wandb.ai for experiment tracking and visualization. Wandb metrics can be disabled by passing --no_wandb to the training script. All of my own experiment results are publicly available at wandb.ai/brentspell/hifi-gan-bwe.

Each training run is identified by a name and a git hash (ex: bwe-01-8abbca9). The git hash is used for simple experiment tracking, reproducibility, and model provenance. Using git to manage experiments also makes it easy to change model hyperparameters by simply changing the code, making a commit, and starting the training run. This is why there is no hyperparameter configuration file in the project, since I often end up having to change the code anyway to run interesting experiments.

Development

Setup

The following script creates a virtual environment using pyenv for the project and installs dependencies.

pyenv install 3.9.10
pyenv virtualenv 3.9.10 hifi-gan-bwe
pip install -r requirements.txt

If you want to run the hifi-* scripts described above in development, you can install the package locally:

pip install -e .

You can then run tests, etc. follows:

pytest --cov=hifi_gan_bwe
black .
isort --profile=black .
flake8 .
mypy .

These checks are also included in the pre-commit configuration for the project, so you can set them up to run automatically on commit by running

pre-commit install

Acknowledgements

The original research on the HiFi-GAN+ model is not my own, and all credit goes to the paper's authors. I also referred to kan-bayashi's excellent Parallel WaveGAN implementation, specifically the WaveNet module. If you use this code, please cite the original paper:

@inproceedings{su2021bandwidth,
  title={Bandwidth extension is all you need},
  author={Su, Jiaqi and Wang, Yunyun and Finkelstein, Adam and Jin, Zeyu},
  booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={696--700},
  year={2021},
  organization={IEEE},
  url={https://doi.org/10.1109/ICASSP39728.2021.9413575},
}

License

Copyright © 2022 Brent M. Spell

Licensed under the MIT License (the "License"). You may not use this package except in compliance with the License. You may obtain a copy of the License at

https://opensource.org/licenses/MIT

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Brent M. Spell
Brent M. Spell
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022