Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Overview

Intro

Build Status codecov

Real-time object detection and classification. Paper: version 1, version 2.

Read more about YOLO (in darknet) and download weight files here. In case the weight file cannot be found, I uploaded some of mine here, which include yolo-full and yolo-tiny of v1.0, tiny-yolo-v1.1 of v1.1 and yolo, tiny-yolo-voc of v2.

See demo below or see on this imgur

Dependencies

Python3, tensorflow 1.0, numpy, opencv 3.

Citation

@article{trieu2018darkflow,
  title={Darkflow},
  author={Trieu, Trinh Hoang},
  journal={GitHub Repository. Available online: https://github. com/thtrieu/darkflow (accessed on 14 February 2019)},
  year={2018}
}

Getting started

You can choose one of the following three ways to get started with darkflow.

  1. Just build the Cython extensions in place. NOTE: If installing this way you will have to use ./flow in the cloned darkflow directory instead of flow as darkflow is not installed globally.

    python3 setup.py build_ext --inplace
    
  2. Let pip install darkflow globally in dev mode (still globally accessible, but changes to the code immediately take effect)

    pip install -e .
    
  3. Install with pip globally

    pip install .
    

Update

Android demo on Tensorflow's here

I am looking for help:

  • help wanted labels in issue track

Parsing the annotations

Skip this if you are not training or fine-tuning anything (you simply want to forward flow a trained net)

For example, if you want to work with only 3 classes tvmonitor, person, pottedplant; edit labels.txt as follows

tvmonitor
person
pottedplant

And that's it. darkflow will take care of the rest. You can also set darkflow to load from a custom labels file with the --labels flag (i.e. --labels myOtherLabelsFile.txt). This can be helpful when working with multiple models with different sets of output labels. When this flag is not set, darkflow will load from labels.txt by default (unless you are using one of the recognized .cfg files designed for the COCO or VOC dataset - then the labels file will be ignored and the COCO or VOC labels will be loaded).

Design the net

Skip this if you are working with one of the original configurations since they are already there. Otherwise, see the following example:

...

[convolutional]
batch_normalize = 1
size = 3
stride = 1
pad = 1
activation = leaky

[maxpool]

[connected]
output = 4096
activation = linear

...

Flowing the graph using flow

# Have a look at its options
flow --h

First, let's take a closer look at one of a very useful option --load

# 1. Load tiny-yolo.weights
flow --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights

# 2. To completely initialize a model, leave the --load option
flow --model cfg/yolo-new.cfg

# 3. It is useful to reuse the first identical layers of tiny for `yolo-new`
flow --model cfg/yolo-new.cfg --load bin/tiny-yolo.weights
# this will print out which layers are reused, which are initialized

All input images from default folder sample_img/ are flowed through the net and predictions are put in sample_img/out/. We can always specify more parameters for such forward passes, such as detection threshold, batch size, images folder, etc.

# Forward all images in sample_img/ using tiny yolo and 100% GPU usage
flow --imgdir sample_img/ --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights --gpu 1.0

json output can be generated with descriptions of the pixel location of each bounding box and the pixel location. Each prediction is stored in the sample_img/out folder by default. An example json array is shown below.

# Forward all images in sample_img/ using tiny yolo and JSON output.
flow --imgdir sample_img/ --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights --json

JSON output:

[{"label":"person", "confidence": 0.56, "topleft": {"x": 184, "y": 101}, "bottomright": {"x": 274, "y": 382}},
{"label": "dog", "confidence": 0.32, "topleft": {"x": 71, "y": 263}, "bottomright": {"x": 193, "y": 353}},
{"label": "horse", "confidence": 0.76, "topleft": {"x": 412, "y": 109}, "bottomright": {"x": 592,"y": 337}}]
  • label: self explanatory
  • confidence: somewhere between 0 and 1 (how confident yolo is about that detection)
  • topleft: pixel coordinate of top left corner of box.
  • bottomright: pixel coordinate of bottom right corner of box.

Training new model

Training is simple as you only have to add option --train. Training set and annotation will be parsed if this is the first time a new configuration is trained. To point to training set and annotations, use option --dataset and --annotation. A few examples:

# Initialize yolo-new from yolo-tiny, then train the net on 100% GPU:
flow --model cfg/yolo-new.cfg --load bin/tiny-yolo.weights --train --gpu 1.0

# Completely initialize yolo-new and train it with ADAM optimizer
flow --model cfg/yolo-new.cfg --train --trainer adam

During training, the script will occasionally save intermediate results into Tensorflow checkpoints, stored in ckpt/. To resume to any checkpoint before performing training/testing, use --load [checkpoint_num] option, if checkpoint_num < 0, darkflow will load the most recent save by parsing ckpt/checkpoint.

# Resume the most recent checkpoint for training
flow --train --model cfg/yolo-new.cfg --load -1

# Test with checkpoint at step 1500
flow --model cfg/yolo-new.cfg --load 1500

# Fine tuning yolo-tiny from the original one
flow --train --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights

Example of training on Pascal VOC 2007:

# Download the Pascal VOC dataset:
curl -O https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar

# An example of the Pascal VOC annotation format:
vim VOCdevkit/VOC2007/Annotations/000001.xml

# Train the net on the Pascal dataset:
flow --model cfg/yolo-new.cfg --train --dataset "~/VOCdevkit/VOC2007/JPEGImages" --annotation "~/VOCdevkit/VOC2007/Annotations"

Training on your own dataset

The steps below assume we want to use tiny YOLO and our dataset has 3 classes

  1. Create a copy of the configuration file tiny-yolo-voc.cfg and rename it according to your preference tiny-yolo-voc-3c.cfg (It is crucial that you leave the original tiny-yolo-voc.cfg file unchanged, see below for explanation).

  2. In tiny-yolo-voc-3c.cfg, change classes in the [region] layer (the last layer) to the number of classes you are going to train for. In our case, classes are set to 3.

    ...
    
    [region]
    anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
    bias_match=1
    classes=3
    coords=4
    num=5
    softmax=1
    
    ...
  3. In tiny-yolo-voc-3c.cfg, change filters in the [convolutional] layer (the second to last layer) to num * (classes + 5). In our case, num is 5 and classes are 3 so 5 * (3 + 5) = 40 therefore filters are set to 40.

    ...
    
    [convolutional]
    size=1
    stride=1
    pad=1
    filters=40
    activation=linear
    
    [region]
    anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
    
    ...
  4. Change labels.txt to include the label(s) you want to train on (number of labels should be the same as the number of classes you set in tiny-yolo-voc-3c.cfg file). In our case, labels.txt will contain 3 labels.

    label1
    label2
    label3
    
  5. Reference the tiny-yolo-voc-3c.cfg model when you train.

    flow --model cfg/tiny-yolo-voc-3c.cfg --load bin/tiny-yolo-voc.weights --train --annotation train/Annotations --dataset train/Images

  • Why should I leave the original tiny-yolo-voc.cfg file unchanged?

    When darkflow sees you are loading tiny-yolo-voc.weights it will look for tiny-yolo-voc.cfg in your cfg/ folder and compare that configuration file to the new one you have set with --model cfg/tiny-yolo-voc-3c.cfg. In this case, every layer will have the same exact number of weights except for the last two, so it will load the weights into all layers up to the last two because they now contain different number of weights.

Camera/video file demo

For a demo that entirely runs on the CPU:

flow --model cfg/yolo-new.cfg --load bin/yolo-new.weights --demo videofile.avi

For a demo that runs 100% on the GPU:

flow --model cfg/yolo-new.cfg --load bin/yolo-new.weights --demo videofile.avi --gpu 1.0

To use your webcam/camera, simply replace videofile.avi with keyword camera.

To save a video with predicted bounding box, add --saveVideo option.

Using darkflow from another python application

Please note that return_predict(img) must take an numpy.ndarray. Your image must be loaded beforehand and passed to return_predict(img). Passing the file path won't work.

Result from return_predict(img) will be a list of dictionaries representing each detected object's values in the same format as the JSON output listed above.

from darkflow.net.build import TFNet
import cv2

options = {"model": "cfg/yolo.cfg", "load": "bin/yolo.weights", "threshold": 0.1}

tfnet = TFNet(options)

imgcv = cv2.imread("./sample_img/sample_dog.jpg")
result = tfnet.return_predict(imgcv)
print(result)

Save the built graph to a protobuf file (.pb)

## Saving the lastest checkpoint to protobuf file
flow --model cfg/yolo-new.cfg --load -1 --savepb

## Saving graph and weights to protobuf file
flow --model cfg/yolo.cfg --load bin/yolo.weights --savepb

When saving the .pb file, a .meta file will also be generated alongside it. This .meta file is a JSON dump of everything in the meta dictionary that contains information nessecary for post-processing such as anchors and labels. This way, everything you need to make predictions from the graph and do post processing is contained in those two files - no need to have the .cfg or any labels file tagging along.

The created .pb file can be used to migrate the graph to mobile devices (JAVA / C++ / Objective-C++). The name of input tensor and output tensor are respectively 'input' and 'output'. For further usage of this protobuf file, please refer to the official documentation of Tensorflow on C++ API here. To run it on, say, iOS application, simply add the file to Bundle Resources and update the path to this file inside source code.

Also, darkflow supports loading from a .pb and .meta file for generating predictions (instead of loading from a .cfg and checkpoint or .weights).

## Forward images in sample_img for predictions based on protobuf file
flow --pbLoad built_graph/yolo.pb --metaLoad built_graph/yolo.meta --imgdir sample_img/

If you'd like to load a .pb and .meta file when using return_predict() you can set the "pbLoad" and "metaLoad" options in place of the "model" and "load" options you would normally set.

That's all.

Owner
Trieu
Google Brain Resident 2017-2019. Doing research - engineering projects in Machine Learning - Deep Learning.
Trieu
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022