Scalable Multi-Agent Reinforcement Learning

Overview

Scalable Multi-Agent Reinforcement Learning

1. Featured algorithms:

  • Value Function Factorization with Variable Agent Sub-Teams (VAST) [1]

2. Implemented domains

All available domains are listed in the table below. The labels are used for the commands below (in 5. and 6.).

Domain Label Description
Warehouse[4] Warehouse-4 Warehouse domain with 4 agents in a 5x3 grid.
Warehouse[8] Warehouse-8 Warehouse domain with 8 agents in a 5x5 grid.
Warehouse[16] Warehouse-16 Warehouse domain with 16 agents in a 9x13 grid.
Battle[20] Battle-20 Battle domain with armies of 20 agents each in a 10x10 grid.
Battle[40] Battle-40 Battle domain with armies of 40 agents each in a 14x14 grid.
Battle[80] Battle-80 Battle domain with armies of 80 agents each in a 18x18 grid.
GaussianSqueeze[200] GaussianSqueeze-200 Gaussian squeeze domain 200 agents.
GaussianSqueeze[400] GaussianSqueeze-400 Gaussian squeeze domain 400 agents.
GaussianSqueeze[800] GaussianSqueeze-800 Gaussian squeeze domain 800 agents.

3. Implemented MARL algorithms

The reported MARL algorithms are listed in the tables below. The labels are used for the commands below (in 5. and 6.).

Baseline Label
IL IL
QMIX QMIX
QTRAN QTRAN
VAST(VFF operator) Label
VAST(IL) VAST-IL
VAST(VDN) VAST-VDN
VAST(QMIX) VAST-QMIX
VAST(QTRAN) VAST-QTRAN
VAST(assignment strategy) Label
VAST(Random) VAST-QTRAN-RANDOM
VAST(Fixed) VAST-QTRAN-FIXED
VAST(Spatial) VAST-QTRAN-SPATIAL
VAST(MetaGrad) VAST-QTRAN

4. Experiment parameters

The experiment parameters like the learning rate for training (params["learning_rate"]) or the number of episodes per epoch (params["episodes_per_epoch"]) are specified in settings.py. All other hyperparameters are set in the corresponding python modules in the package vast/controllers, where all final values as listed in the technical appendix are specified as default value.

All hyperparameters can be adjusted by setting their values via the params dictionary in settings.py.

5. Training

To train a MARL algorithm M (see tables in 3.) in domain D (see table in 2.) with compactness factor eta, run the following command:

python train.py M D eta

This command will create a folder with the name pattern output/N-agents_domain-D_subteams-S_M_datetime which contains the trained models (depending on the MARL algorithm).

train.sh is an example script for running all settings as specified in the paper.

6. Plotting

To generate plots for a particular domain D and evaluation mode E as presented in the paper, run the following command:

python plot.py M E

The command will load and display all the data of completed training runs that are stored in the folder which is specified in params["output_folder"] (see settings.py).

The evaluation mode E are specified in the table below:

Evaluation mode Label
VFF operator comparison F
State-of-the-art comparison S
Assignment strategy comparison A
Division diversity comparison D

7. Rendering

To render episodes of the Warehouse[N] or Battle[N] domain, set params["render_pygame"]=True in settings.py.

8. References

  • [1] T. Phan et al., "VAST: Value Function Factorization with Variable Agent Sub-Teams", in NeurIPS 2021
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022