LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Overview

Package Description

The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide a data-driven solution. Based on an observation dataset including 3091 spectra from 361 individual SNe Ia, we trained LSTM neural networks to learn from the spectroscopic time-series data of type Ia supernovae. The model enables the construction of spectral sequences from spectroscopic observations with very limited time coverage.

This repository is associated to the paper "Spectroscopic Studies of Type Ia Supernovae Using LSTM Neural Networks (Hu et al. 2021, ApJ, under review)".

Installation

One can install any desired version of snlstm from Github https://github.com/thomasvrussell/snlstm:

python setup.py install

Additional dependencies

  • R : In order to reduce the data dimension, we use Functional Principal Component Analysis (FPCA) to parameterize supernova spectra before feeding them into neural networks. The FPCA parameterization and FPCA reconstruction are achieved by the fpca package in R programming language. One can install them, e.g., on CentOS

    $ yum install R
    R > install.packages("fpca")
    
  • TensorFlow : tensorflow is required to load a given LSTM model and make the spectral predictions. The default LSTM model in this repository is trained on an enviornment with tensorflow 1.14.0. To avoid potential incompatiability issues casued by different tensorflow versions, we recommend users to install the same version via Conda

    conda install -c anaconda tensorflow=1.14.0
    
  • PYPHOT (optional) : pyphot is a portable package to compute synthetic photometry of a spectrum with given filter. In our work, the tool was used to correct the continuum component of a supernova spectrum so that its synthetic photometry could be in line with the observed light curves. One may consider to install the package if such color calibration is necessary. We recommend users to install the latest version from Github (pyphot 1.1)

    pip install git+https://github.com/mfouesneau/pyphot
    

Download archival datasets

snlstm allows users to access to the following archival datasets

[1] A spectral-observation dataset : it is comprised of 3091 observed spectra from 361 SNe Ia, largely contributed from CfA (Blondin et al. 2012), BSNIP (Silverman et al. 2012), CSP (Folatelli et al. 2013) and Supernova Polarimetry Program (Wang & Wheeler 2008; Cikota et al. 2019a; Yang et al. 2020).
[2] A spectral-template dataset : it includes 361 spectral templates, each of them (covering -15 to +33d with wavelength from 3800 to 7200 A) was generated from the available spectroscopic observations of an individual SN via a LSTM neural network model.
[3] An auxiliary photometry dataset : it provides the B & V light curves of these SNe (in total, 196 available), that were used to calibrate the synthetic B-V color of the observed spectra.

These datasets are stored on Zenodo platform, one can download the related files (~ 2GB) through the Zenodo page: https://doi.org/10.5281/zenodo.5637790.

Quick start guide

We prepared several jupyter notebooks as quick tutorials to use our package in a friendly way.

[*] 1-Access_to_Archival_ObservationData.ipynb : this notebook is to show how to access to the spectral-observation dataset and the auxiliary photometry dataset.
[†] 2-Access_to_Archival_TemplateData.ipynb : one can obtain the LSTM generated spectral time sequences in the spectral-template dataset following this notebook.
[‡] 3-SpecData_Process_Example.ipynb : the notebook demonstrates the pre-processing of the spectroscopic data described in our paper, including smooth, rebinning, lines removal and color calibration, etc.
[§] 4-LSTM_Predictions_on_New_SN.ipynb : the notebook provides a guide for users who want apply our LSTM model on very limited spectroscopic data of newly discovered SNe Ia. In this notebook, we use SN 2016coj, a well-observed SN Ia from the latest BSNIP data release, as an example.
[¶] 5-LSTM_Estimate_Spectral_Phase.ipynb : our neural network is trained based on the spectral data with known phases, however, it is still possible to apply the model to the spectra without any prior phase knownlege. The idea is wrong given phase of input spectrum will degrade the predictive accuracy of our method, that is to say, we can find the best-fit phase of input spectrum by minimizing the accuacy of prediction for itself. This notebook is to show how to estimate spectral phase via our model. For the case of SN 2016coj in the notebook, the estimation errors are around 0.5 - 2.0d.

Publications use our method

  • SN2018agk: A prototypical Type Ia Supernova with a smooth power-law rise in Kepler (K2) (Qinan Wang, et al., 2021, ApJ, see Figure 5 & 6).

Todo list

  • Support spectral sequence with arbitrary timesteps as input. (current model only accepts spectral pair inputs.)
  • Support more flexible wavelength range for input spectra. (current model is trained on spectra with uniform wavelength range from 3800 to 7200 A.)

Common issues

TBD

Development

The latest source code can be obtained from https://github.com/thomasvrussell/snlstm.

When submitting bug reports or questions via the issue tracker, please include the following information:

  • OS platform.
  • Python version.
  • Tensorflow version.
  • Version of snlstm.

Cite

Spectroscopic Studies of Type Ia Supernovae Using LSTM Neural Networks (Hu et al. 2021, ApJ, under review).

You might also like...
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

Forecasting directional movements of stock prices for intraday trading using LSTM and random forest
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Deep learning based hand gesture recognition using LSTM and MediaPipie.
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

A3C LSTM  Atari with Pytorch plus A3G design
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

Releases(v1.1.2)
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022