The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

Related tags

Deep LearningDeepBDC
Overview

DeepBDC for few-shot learning

      

Introduction

In this repo, we provide the implementation of the following paper:
"Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification" [Project] [Paper].

In this paper, we propose deep Brownian Distance Covariance (DeepBDC) for few-shot classification. DeepBDC can effectively learn image representations by measuring, for the query and support images, the discrepancy between the joint distribution of their embedded features and product of the marginals. The core of DeepBDC is formulated as a modular and efficient layer, which can be flexibly inserted into deep networks, suitable not only for meta-learning framework based on episodic training, but also for the simple transfer learning (STL) framework of pretraining plus linear classifier.

If you find this repo helpful for your research, please consider citing our paper:

@inproceedings{DeepBDC-CVPR2022,
    title={Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification},
    author={Jiangtao Xie and Fei Long and Jiaming Lv and Qilong Wang and Peihua Li}, 
    booktitle={CVPR},
    year={2022}
 }

Few-shot classification Results

Experimental results on miniImageNet and CUB. We report average results with 2,000 randomly sampled episodes for both 1-shot and 5-shot evaluation. More details on the experiments can be seen in the paper.

miniImageNet

Method ResNet-12 Pre-trained models Meta-trained models
5-way-1-shot 5-way-5-shot GoogleDrive BaiduCloud GoogleDrive BaiduCloud
ProtoNet 62.11±0.44 80.77±0.30 Download Download Download Download
Good-Embed 64.98±0.44 82.10±0.30 Download Download N/A
Meta DeepBDC 67.34±0.43 84.46±0.28 Download Download Download Download
STL DeepBDC 67.83±0.43 85.45±0.29 Download Download N/A

Note that for Good-Embed and STL DeepBDC, a sequential self-distillation technique is used to obtain the pre-trained models; See the paper of Good-Embed for details.

CUB

Method ResNet-18 Pre-trained models Meta-trained models
5-way-1-shot 5-way-5-shot GoogleDrive BaiduCloud GoogleDrive BaiduCloud
ProtoNet 80.90±0.43 89.81±0.23 Download Download Download Download
Good-Embed 77.92±0.46 89.94±0.26 Download Download N/A
Meta DeepBDC 83.55±0.40 93.82±0.17 Download Download Download Download
STL DeepBDC 84.01±0.42 94.02±0.24 Download Download N/A

Note that for Good-Embed and STL DeepBDC, a sequential self-distillation technique is used to obtain the pre-trained models; See the paper of Good-Embed for details.

References

[BDC] G. J. Szekely and M. L. Rizzo. Brownian distance covariance. Annals of Applied Statistics, 3:1236–1265, 2009.
[ProtoNet] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.
[Good-Embed] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. Rethinking few-shot image classification: a good embedding is all you need? In ECCV, 2020.

Implementation details

Datasets

  • miniImageNet: We use the splits provided by Chen et al.
  • CUB: We use the splits provided by Chen et al.
  • tieredImageNet
  • Aircraft
  • Cars

Implementation environment

Note that the test accuracy may slightly vary with different Pytorch/CUDA versions, GPUs, etc.

  • Linux
  • Python 3.8.3
  • torch 1.7.1
  • GPU (RTX3090) + CUDA11.0 CuDNN
  • sklearn1.0.1, pillow8.0.0, numpy1.19.2

Installation

  • Clone this repo:
git clone https://github.com/Fei-Long121/DeepBDC.git
cd DeepBDC

For Meta DeepBDC on general object recognition

  1. cd scripts/mini_magenet/run_meta_deepbdc
  2. modify the dataset path in run_pretrain.sh, run_metatrain.sh and run_test.sh
  3. bash run.sh

For STL DeepBDC on general object recognition

  1. cd scripts/mini_imagenet/run_stl_deepbdc
  2. modify the dataset path in run_pretrain.sh, run_distillation.sh and run_test.sh
  3. bash run.sh

Acknowledgments

Our code builds upon the the following code publicly available:

Contact

If you have any questions or suggestions, please contact us:

Fei Long([email protected])
Jiaming Lv([email protected])

an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022