Tools for Optuna, MLflow and the integration of both.

Overview

HPOflow - Sphinx DOC

DOC MIT License Contributor Covenant Python Version pypi
pytest status Static Code Checks status Build & Deploy Doc GitHub issues

Tools for Optuna, MLflow and the integration of both.

Detailed documentation with examples can be found here: Sphinx DOC

Table of Contents

Maintainers

One Conversation
This project is maintained by the One Conversation team of Deutsche Telekom AG.

The main components are:

Installation

HPOflow is available at the Python Package Index (PyPI). It can be installed with pip:

$ pip install hpoflow

Some additional dependencies might be necessary.

To use hpoflow.optuna_mlflow.OptunaMLflow:

$ pip install mlflow GitPython

To use hpoflow.optuna_transformers.OptunaMLflowCallback:

$ pip install mlflow GitPython transformers

To install all optional dependencies use:

$ pip install hpoflow[optional]

Support and Feedback

The following channels are available for discussions, feedback, and support requests:

Reporting Security Vulnerabilities

This project is built with security and data privacy in mind to ensure your data is safe. We are grateful for security researchers and users reporting a vulnerability to us, first. To ensure that your request is handled in a timely manner and non-disclosure of vulnerabilities can be assured, please follow the below guideline.

Please do not report security vulnerabilities directly on GitHub. GitHub Issues can be publicly seen and therefore would result in a direct disclosure.

Please address questions about data privacy, security concepts, and other media requests to the [email protected] mailbox.

Contribution

Our commitment to open source means that we are enabling - in fact encouraging - all interested parties to contribute and become part of our developer community.

Contribution and feedback is encouraged and always welcome. For more information about how to contribute, as well as additional contribution information, see our Contribution Guidelines.

Code of Conduct

This project has adopted the Contributor Covenant as our code of conduct. Please see the details in our Contributor Covenant Code of Conduct. All contributors must abide by the code of conduct.

Licensing

Copyright (c) 2021 Philip May, Deutsche Telekom AG
Copyright (c) 2021 Philip May
Copyright (c) 2021 Timothy Wolff-Piggott

Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License by reviewing the file LICENSE in the repository.

Comments
  • review README.md and CONTRIBUTING.md

    review README.md and CONTRIBUTING.md

    Review README.md and CONTRIBUTING.md

    • is there something missing? maybe compare with optuna and transformers
    • spelling
    • idiomatic english
    • consistency
    • correctness
    • links ok?
    • ...

    PS: The real documentation is still missing and a know issue.

    opened by PhilipMay 12
  • add typing in optuna_transformers

    add typing in optuna_transformers

    @twolffpiggott can you please tell me the type of this?

    https://github.com/telekom/HPOflow/blob/e2b0943218af419a79ce95e60b67c9a4c2477349/hpoflow/optuna_transformers.py#L47

    opened by PhilipMay 6
  • add `transformers.py`

    add `transformers.py`

    @twolffpiggott should we add this here or to an other project we open source?

    https://github.com/PhilipMay/mltb/blob/master/mltb/integration/transformers.py

    enhancement 
    opened by PhilipMay 6
  • Create Sphinx documentation page

    Create Sphinx documentation page

    • [x] setup
    • [x] make GH action
    • [x] setup page
    • [x] change styling to telekom style
    • switch to MD
    • [x] add more content
    • [x] link from README to page
    • [x] link from pypi to GH page
    • [x] add impressum
    • [x] remove strange mouse over image effect
    • add version info
    documentation 
    opened by PhilipMay 4
  • Problems with direct `_imports.check()` call

    Problems with direct `_imports.check()` call

    When the __init__.py imports OMLflowCallback the optuna_transformers.py script is executed. That executes the _imports.check() call which then throws an exception if transformers or mlflow is not installed. But that should be avoided.

    See here: https://github.com/telekom/HPOflow/blob/d1cce5cbc2a84634d1484a053286000dda05b681/hpoflow/optuna_transformers.py#L11-L17

    The solution would be to put the _imports.check() call into the constructor. But that is not possible because OMLflowCallback inherits from transformers.

    The only solution I have is to put OMLflowCallback into an factory function that creates an OMLflowCallback and does the _imports.check() in there.

    @twolffpiggott what do you think?

    bug 
    opened by PhilipMay 3
  • Flake8 ignore list for Black compatibility

    Flake8 ignore list for Black compatibility

    Flake8 raises a warning for "E203" when it encounters a Black decision to insert whitespace before : in slicing syntax.

    Black's behaviour is more correct here, so my suggestion is to add "E203" to the flake8 config ignore list.

    i.e. in setup.cfg:

    [flake8]
    ...
    extend-ignore = E203
    opened by twolffpiggott 3
  • Simple Example?

    Simple Example?

    I don't understand how to use this package. Could you provide a basic example? I don't understand the import_structure and how it relates to importing the modules? Thanks

    opened by jmrichardson 2
  • WIP prefix in contrib file

    WIP prefix in contrib file

    Should this

    Create Work In Progress [WIP] pull requests only if you need clarification or an explicit review before you can continue your work item.

    be more like this

    Add a [WIP] prefix on your pull request name if you need clarification or an explicit review before you can continue your work item.

    documentation 
    opened by PhilipMay 2
Releases(0.1.4)
Owner
Telekom Open Source Software
published by Deutsche Telekom AG and partner companies
Telekom Open Source Software
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
Microsoft 5.6k Jan 07, 2023
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
A Lightweight Hyperparameter Optimization Tool šŸš€

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Machine Learning Techniques using python.

šŸ‘‹ Hi, I’m Fahad from TEXAS TECH. šŸ‘€ I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022