Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Overview

Towards Diverse Paragraph Captioning for Untrimmed Videos

This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Captioning for Untrimmed Videos (CVPR 2021).

Requirements

  • Python 3.6
  • Java 15.0.2
  • PyTorch 1.2
  • numpy, tqdm, h5py, scipy, six

Training & Inference

Data preparation

  1. Download the pre-extracted video features of ActivityNet Captions or Charades Captions datasets from BaiduNetdisk (code: he21).
  2. Decompress the downloaded files to the corresponding dataset folder in the ordered_feature/ directory.

Start training

  1. Train our model without reinforcement learning, * can be activitynet or charades.
$ cd driver
$ CUDA_VISIBLE_DEVICES=0 python transformer.py ../results/*/dm.token/model.json ../results/*/dm.token/path.json --is_train
  1. Fine-tune the pretrained model using self-critical with both accuracy and diversity rewards.
$ cd driver
$ CUDA_VISIBLE_DEVICES=0 python transformer.py ../results/*/dm.token.rl/model.json ../results/*/dm.token.rl/path.json --is_train --resume_file ../results/*/dm.token/model/epoch.*.th
  1. Train our model with key frames selection.
$ cd driver
$ CUDA_VISIBLE_DEVICES=0 python transformer.py ../results/*/key_frames/model.json ../results/*/key_frames/path.json --is_train --resume_file ../results/*/key_frames/pretrained.th

It will achieve a slightly worse result with only a half of the video features used at inference phase for faster decoding. You need to download the pretrained.th model at first for the key-frame selection.

Evaluation

The trained checkpoints have been saved at the results/*/folder/model/ directory. After evaluation, the generated captions (corresponding to the name file in the public_split) and evaluating scores will be saved at results/*/folder/pred/tst/.

$ cd driver
$ CUDA_VISIBLE_DEVICES=0 python transformer.py ../results/*/folder/model.json ../results/*/folder/path.json --eval_set tst --resume_file ../results/*/folder/model/epoch.*.th

We also provide the pretrained models for the ActivityNet dataset here and Charades dataset here, which are re-run and achieve similar results with the paper.

Reference

If you find this repo helpful, please consider citing:

@inproceedings{song2021paragraph,
  title={Towards Diverse Paragraph Captioning for Untrimmed Videos},
  author={Song, Yuqing and Chen, Shizhe and Jin, Qin},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Yuqing Song
A student from RUC, major in CS.
Yuqing Song
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022