sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

Overview

sequitur

sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three different autoencoder architectures in PyTorch, and a predefined training loop. sequitur is ideal for working with sequential data ranging from single and multivariate time series to videos, and is geared for those who want to get started quickly with autoencoders.

import torch
from sequitur.models import LINEAR_AE
from sequitur import quick_train

train_seqs = [torch.randn(4) for _ in range(100)] # 100 sequences of length 4
encoder, decoder, _, _ = quick_train(LINEAR_AE, train_seqs, encoding_dim=2, denoise=True)

encoder(torch.randn(4)) # => torch.tensor([0.19, 0.84])

Each autoencoder learns to represent input sequences as lower-dimensional, fixed-size vectors. This can be useful for finding patterns among sequences, clustering sequences, or converting sequences into inputs for other algorithms.

Installation

Requires Python 3.X and PyTorch 1.2.X

You can install sequitur with pip:

$ pip install sequitur

Getting Started

1. Prepare your data

First, you need to prepare a set of example sequences to train an autoencoder on. This training set should be a list of torch.Tensors, where each tensor has shape [num_elements, *num_features]. So, if each example in your training set is a sequence of 10 5x5 matrices, then each example would be a tensor with shape [10, 5, 5].

2. Choose an autoencoder

Next, you need to choose an autoencoder model. If you're working with sequences of numbers (e.g. time series) or 1D vectors (e.g. word vectors), then you should use the LINEAR_AE or LSTM_AE model. For sequences of 2D matrices (e.g. videos) or 3D matrices (e.g. fMRI scans), you'll want to use CONV_LSTM_AE. Each model is a PyTorch module, and can be imported like so:

from sequitur.models import CONV_LSTM_AE

More details about each model are in the "Models" section below.

3. Train the autoencoder

From here, you can either initialize the model yourself and write your own training loop, or import the quick_train function and plug in the model, training set, and desired encoding size, like so:

import torch
from sequitur.models import CONV_LSTM_AE
from sequitur import quick_train

train_set = [torch.randn(10, 5, 5) for _ in range(100)]
encoder, decoder, _, _ = quick_train(CONV_LSTM_AE, train_set, encoding_dim=4)

After training, quick_train returns the encoder and decoder models, which are PyTorch modules that can encode and decode new sequences. These can be used like so:

x = torch.randn(10, 5, 5)
z = encoder(x) # Tensor with shape [4]
x_prime = decoder(z) # Tensor with shape [10, 5, 5]

API

Training your Model

quick_train(model, train_set, encoding_dim, verbose=False, lr=1e-3, epochs=50, denoise=False, **kwargs)

Lets you train an autoencoder with just one line of code. Useful if you don't want to create your own training loop. Training involves learning a vector encoding of each input sequence, reconstructing the original sequence from the encoding, and calculating the loss (mean-squared error) between the reconstructed input and the original input. The autoencoder weights are updated using the Adam optimizer.

Parameters:

  • model (torch.nn.Module): Autoencoder model to train (imported from sequitur.models)
  • train_set (list): List of sequences (each a torch.Tensor) to train the model on; has shape [num_examples, seq_len, *num_features]
  • encoding_dim (int): Desired size of the vector encoding
  • verbose (bool, optional (default=False)): Whether or not to print the loss at each epoch
  • lr (float, optional (default=1e-3)): Learning rate
  • epochs (int, optional (default=50)): Number of epochs to train for
  • **kwargs: Parameters to pass into model when it's instantiated

Returns:

  • encoder (torch.nn.Module): Trained encoder model; takes a sequence (as a tensor) as input and returns an encoding of the sequence as a tensor of shape [encoding_dim]
  • decoder (torch.nn.Module): Trained decoder model; takes an encoding (as a tensor) and returns a decoded sequence
  • encodings (list): List of tensors corresponding to the final vector encodings of each sequence in the training set
  • losses (list): List of average MSE values at each epoch

Models

Every autoencoder inherits from torch.nn.Module and has an encoder attribute and a decoder attribute, both of which also inherit from torch.nn.Module.

Sequences of Numbers

LINEAR_AE(input_dim, encoding_dim, h_dims=[], h_activ=torch.nn.Sigmoid(), out_activ=torch.nn.Tanh())

Consists of fully-connected layers stacked on top of each other. Can only be used if you're dealing with sequences of numbers, not vectors or matrices.

Parameters:

  • input_dim (int): Size of each input sequence
  • encoding_dim (int): Size of the vector encoding
  • h_dims (list, optional (default=[])): List of hidden layer sizes for the encoder
  • h_activ (torch.nn.Module or None, optional (default=torch.nn.Sigmoid())): Activation function to use for hidden layers; if None, no activation function is used
  • out_activ (torch.nn.Module or None, optional (default=torch.nn.Tanh())): Activation function to use for the output layer in the encoder; if None, no activation function is used

Example:

To create the autoencoder shown in the diagram above, use the following arguments:

from sequitur.models import LINEAR_AE

model = LINEAR_AE(
  input_dim=10,
  encoding_dim=4,
  h_dims=[8, 6],
  h_activ=None,
  out_activ=None
)

x = torch.randn(10) # Sequence of 10 numbers
z = model.encoder(x) # z.shape = [4]
x_prime = model.decoder(z) # x_prime.shape = [10]

Sequences of 1D Vectors

LSTM_AE(input_dim, encoding_dim, h_dims=[], h_activ=torch.nn.Sigmoid(), out_activ=torch.nn.Tanh())

Autoencoder for sequences of vectors which consists of stacked LSTMs. Can be trained on sequences of varying length.

Parameters:

  • input_dim (int): Size of each sequence element (vector)
  • encoding_dim (int): Size of the vector encoding
  • h_dims (list, optional (default=[])): List of hidden layer sizes for the encoder
  • h_activ (torch.nn.Module or None, optional (default=torch.nn.Sigmoid())): Activation function to use for hidden layers; if None, no activation function is used
  • out_activ (torch.nn.Module or None, optional (default=torch.nn.Tanh())): Activation function to use for the output layer in the encoder; if None, no activation function is used

Example:

To create the autoencoder shown in the diagram above, use the following arguments:

from sequitur.models import LSTM_AE

model = LSTM_AE(
  input_dim=3,
  encoding_dim=7,
  h_dims=[64],
  h_activ=None,
  out_activ=None
)

x = torch.randn(10, 3) # Sequence of 10 3D vectors
z = model.encoder(x) # z.shape = [7]
x_prime = model.decoder(z, seq_len=10) # x_prime.shape = [10, 3]

Sequences of 2D/3D Matrices

CONV_LSTM_AE(input_dims, encoding_dim, kernel, stride=1, h_conv_channels=[1], h_lstm_channels=[])

Autoencoder for sequences of 2D or 3D matrices/images, loosely based on the CNN-LSTM architecture described in Beyond Short Snippets: Deep Networks for Video Classification. Uses a CNN to create vector encodings of each image in an input sequence, and then an LSTM to create encodings of the sequence of vectors.

Parameters:

  • input_dims (tuple): Shape of each 2D or 3D image in the input sequences
  • encoding_dim (int): Size of the vector encoding
  • kernel (int or tuple): Size of the convolving kernel; use tuple to specify a different size for each dimension
  • stride (int or tuple, optional (default=1)): Stride of the convolution; use tuple to specify a different stride for each dimension
  • h_conv_channels (list, optional (default=[1])): List of hidden channel sizes for the convolutional layers
  • h_lstm_channels (list, optional (default=[])): List of hidden channel sizes for the LSTM layers

Example:

from sequitur.models import CONV_LSTM_AE

model = CONV_LSTM_AE(
  input_dims=(50, 100),
  encoding_dim=16,
  kernel=(5, 8),
  stride=(3, 5),
  h_conv_channels=[4, 8],
  h_lstm_channels=[32, 64]
)

x = torch.randn(22, 50, 100) # Sequence of 22 50x100 images
z = model.encoder(x) # z.shape = [16]
x_prime = model.decoder(z, seq_len=22) # x_prime.shape = [22, 50, 100]
Owner
Jonathan Shobrook
Jonathan Shobrook
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021