SMPLpix: Neural Avatars from 3D Human Models

Related tags

Deep Learningsmplpix
Overview
subject0_validation_poses.mp4

Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video.

SMPLpix: Neural Avatars from 3D Human Models

SMPLpix neural rendering framework combines deformable 3D models such as SMPL-X with the power of image-to-image translation frameworks (aka pix2pix models).

Please check our WACV 2021 paper or a 5-minute explanatory video for more details on the framework.

Important note: this repository is a re-implementation of the original framework, made by the same author after the end of internship. It does not contain the original Amazon multi-subject, multi-view training data and code, and uses full mesh rasterizations as inputs rather than point projections (as described here).

Demo

Description Link
Process a video into a SMPLpix dataset Open In Colab
Train SMPLpix Open In Colab

Prepare the data

demo_openpose_simplifyx

We provide the Colab notebook for preparing SMPLpix training dataset. This will allow you to create your own neural avatar given monocular video of a human moving in front of the camera.

Run demo training

We provide some preprocessed data which allows you to run and test the training pipeline right away:

git clone https://github.com/sergeyprokudin/smplpix
cd smplpix
python setup.py install
python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_url='https://www.dropbox.com/s/coapl05ahqalh09/smplpix_data_test_final.zip?dl=0'

Train on your own data

You can train SMPLpix on your own data by specifying the path to the root directory with data:

python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_dir='/path/to/data'

The directory should contain train, validation and test folders, each of which should contain input and output folders. Check the structure of the demo dataset for reference.

You can also specify various parameters of training via command line. E.g., to reproduce the results of the demo video:

python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_url='https://www.dropbox.com/s/coapl05ahqalh09/smplpix_data_test_final.zip?dl=0' \
                        --downsample_factor=2 \
                        --n_epochs=500 \
                        --sched_patience=2 \
                        --batch_size=4 \
                        --n_unet_blocks=5 \
                        --n_input_channels=3 \
                        --n_output_channels=3 \
                        --eval_every_nth_epoch=10

Check the args.py for the full list of parameters.

More examples

Animating with novel poses

subject0_test_poses.mp4

Left: poses from the test video sequence, right: SMPLpix renders.

Rendering faces

deca_smplpix_test_renders.mp4

Left: FLAME face model inferred with DECA, middle: ground truth test video, right: SMPLpix render.

Thanks to Maria Paola Forte for providing the sequence.

Few-shot artistic neural style transfer

kabarov_animations.mp4

Left: rendered AMASS motion sequence, right: generated SMPLpix animations. See the explanatory video for details.

Credits to Alexander Kabarov for providing the training sketches.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{prokudin2021smplpix,
  title={SMPLpix: Neural Avatars from 3D Human Models},
  author={Prokudin, Sergey and Black, Michael J and Romero, Javier},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={1810--1819},
  year={2021}
}

License

See the LICENSE file.

Owner
Sergey Prokudin
Postdoctoral researcher in computer vision and machine learning
Sergey Prokudin
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022