One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Overview

Introduction

  • One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".
  • Users can apply it to parse the input text from scratch, and get the EDU segmentations and the parsed tree structure.
  • The model supports both sentence-level and document-level RST discourse parsing.
  • This repo and the pre-trained model is only for research use.

Package Requirements

  1. pytorch==1.7.1
  2. transformers==4.8.2

Supported Languages

We trained and evaluated the model with the multilingual collection of RST discourse treebanks, and it natively supports 6 languages: English, Portuguese, Spanish, German, Dutch, Basque. Interested users can also try other languages.

Data Format

  • [Input] InputSentence: The input document/sentence, and the raw text will be tokenizaed and encoded by the xlm-roberta-base language backbone. '|| ' denotes the EDU boundary positions.

    • Although the report, || which has released || before the stock market opened, || didn't trigger the 190.58 point drop in the Dow Jones Industrial Average, || analysts said || it did play a role in the market's decline. ||
  • [Output] EDU_Breaks: The indices of the EDU boundary tokens, including the last word of the sentence.

    • [2, 5, 10, 22, 24, 33]
  • [Output] tree_parsing_output: The model outputs of the discourse parsing tree follow this format.

    • (1:Satellite=Contrast:4,5:Nucleus=span:6) (1:Nucleus=Same-Unit:3,4:Nucleus=Same-Unite:4) (5:Satellite=Attribution:5,6:Nucleus=span:6) (1:Satellite=span:1,2:Nucleus=Elaboration:3) (2:Nucleus=span:2,3:Satellite=Temporal:3)

How to use it for parsing

  • Put the text paragraph to the file ./data/text_for_inference.txt.
  • Run the script MUL_main_Infer.py to obtain the RST parsing result. See the script for detailed model output.
  • We recommend users to run the parser on a GPU-equipped environment.

Citation

@article{liu2021dmrst,
  title={DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing},
  author={Liu, Zhengyuan and Shi, Ke and Chen, Nancy F},
  journal={arXiv preprint arXiv:2110.04518},
  year={2021}
}
@inproceedings{liu2020multilingual,
  title={Multilingual Neural RST Discourse Parsing},
  author={Liu, Zhengyuan and Shi, Ke and Chen, Nancy},
  booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
  pages={6730--6738},
  year={2020}
}
Owner
seq-to-mind
seq-to-mind
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022