UniFormer - official implementation of UniFormer

Overview

UniFormer

This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It currently includes code and models for the following tasks:

Updates

01/13/2022

[Initial commits]:

  1. Pretrained models on ImageNet-1K, Kinetics-400, Kinetics-600, Something-Something V1&V2

  2. The supported code and models for image classification and video classification are provided.

Introduction

UniFormer (Unified transFormer) is introduce in arxiv, which effectively unifies 3D convolution and spatiotemporal self-attention in a concise transformer format. We adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.

UniFormer achieves strong performance on video classification. With only ImageNet-1K pretraining, our UniFormer achieves 82.9%/84.8% top-1 accuracy on Kinetics-400/Kinetics-600, while requiring 10x fewer GFLOPs than other comparable methods (e.g., 16.7x fewer GFLOPs than ViViT with JFT-300M pre-training). For Something-Something V1 and V2, our UniFormer achieves 60.9% and 71.2% top-1 accuracy respectively, which are new state-of-the-art performances.

teaser

Main results on ImageNet-1K

Please see image_classification for more details.

More models with large resolution and token labeling will be released soon.

Model Pretrain Resolution Top-1 #Param. FLOPs
UniFormer-S ImageNet-1K 224x224 82.9 22M 3.6G
UniFormer-S† ImageNet-1K 224x224 83.4 24M 4.2G
UniFormer-B ImageNet-1K 224x224 83.9 50M 8.3G

Main results on Kinetics-400

Please see video_classification for more details.

Model Pretrain #Frame Sampling Method FLOPs K400 Top-1 K600 Top-1
UniFormer-S ImageNet-1K 16x1x4 16x4 167G 80.8 82.8
UniFormer-S ImageNet-1K 16x1x4 16x8 167G 80.8 82.7
UniFormer-S ImageNet-1K 32x1x4 32x4 438G 82.0 -
UniFormer-B ImageNet-1K 16x1x4 16x4 387G 82.0 84.0
UniFormer-B ImageNet-1K 16x1x4 16x8 387G 81.7 83.4
UniFormer-B ImageNet-1K 32x1x4 32x4 1036G 82.9 84.5*

* Since Kinetics-600 is too large to train (>1 month in single node with 8 A100 GPUs), we provide model trained in multi node (around 2 weeks with 32 V100 GPUs), but the result is lower due to the lack of tuning hyperparameters.

Main results on Something-Something

Please see video_classification for more details.

Model Pretrain #Frame FLOPs SSV1 Top-1 SSV2 Top-1
UniFormer-S K400 16x3x1 125G 57.2 67.7
UniFormer-S K600 16x3x1 125G 57.6 69.4
UniFormer-S K400 32x3x1 329G 58.8 69.0
UniFormer-S K600 32x3x1 329G 59.9 70.4
UniFormer-B K400 16x3x1 290G 59.1 70.4
UniFormer-B K600 16x3x1 290G 58.8 70.2
UniFormer-B K400 32x3x1 777G 60.9 71.1
UniFormer-B K600 32x3x1 777G 61.0 71.2

Main results on downstream tasks

We have conducted extensive experiments on downstream tasks and achieved comparable results with SOTA models.

Code and models will be released in two weeks.

Cite Uniformer

If you find this repository useful, please use the following BibTeX entry for citation.

@misc{li2022uniformer,
      title={Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning}, 
      author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
      year={2022},
      eprint={2201.04676},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This project is released under the MIT license. Please see the LICENSE file for more information.

Contributors and Contact Information

UniFormer is maintained by Kunchang Li.

For help or issues using UniFormer, please submit a GitHub issue.

For other communications related to UniFormer, please contact Kunchang Li ([email protected]).

Owner
SenseTime X-Lab
Powered by X-Lab, SenseTime Research
SenseTime X-Lab
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Facebook Research 605 Jan 02, 2023
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600Ɨ600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600Ɨ600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License šŸŽ“ Introduction REval is a simple framework for

13 Jan 06, 2023
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022