Second Order Optimization and Curvature Estimation with K-FAC in JAX.

Overview

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX

Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX

CI status docs pypi

KFAC-JAX is a library built on top of JAX for second-order optimization of neural networks and for computing scalable curvature approximations. The main goal of the library is to provide researchers with an easy-to-use implementation of the K-FAC optimizer and curvature estimator.

Installation

KFAC-JAX is written in pure Python, but depends on C++ code via JAX.

First, follow these instructions to install JAX with the relevant accelerator support.

Then, install KFAC-JAX using pip:

$ pip install git+https://github.com/deepmind/kfac-jax

Alternatively, you can install via PyPI:

$ pip install -U kfac-jax

Our examples rely on additional libraries, all of which you can install using:

$ pip install -r requirements_examples.txt

Quickstart

Let's take a look at a simple example of training a neural network, defined using Haiku, with the K-FAC optimizer:

import haiku as hk
import jax
import jax.numpy as jnp
import kfac_jax

# Hyper parameters
NUM_CLASSES = 10
L2_REG = 1e-3
NUM_BATCHES = 100


def make_dataset_iterator(batch_size):
  # Dummy dataset, in practice this should be your dataset pipeline
  for _ in range(NUM_BATCHES):
    yield jnp.zeros([batch_size, 100]), jnp.ones([batch_size], dtype="int32") 


def softmax_cross_entropy(logits: jnp.ndarray, targets: jnp.ndarray):
  """Softmax cross entropy loss."""
  # We assume integer labels
  assert logits.ndim == targets.ndim + 1
  
  # Tell KFAC-JAX this model represents a classifier
  # See https://kfac-jax.readthedocs.io/en/latest/overview.html#supported-losses
  kfac_jax.register_softmax_cross_entropy_loss(logits, targets)
  log_p = jax.nn.log_softmax(logits, axis=-1)
  return - jax.vmap(lambda x, y: x[y])(log_p, targets)


def model_fn(x):
  """A Haiku MLP model function - three hidden layer network with tanh."""
  return hk.nets.MLP(
    output_sizes=(50, 50, 50, NUM_CLASSES),
    with_bias=True,
    activation=jax.nn.tanh,
  )(x)


# The Haiku transformed model
hk_model = hk.without_apply_rng(hk.transform(model_fn))


def loss_fn(model_params, model_batch):
  """The loss function to optimize."""
  x, y = model_batch
  logits = hk_model.apply(model_params, x)
  loss = jnp.mean(softmax_cross_entropy(logits, y))
  
  # The optimizer assumes that the function you provide has already added
  # the L2 regularizer to its gradients.
  return loss + L2_REG * kfac_jax.utils.inner_product(params, params) / 2.0


# Create the optimizer
optimizer = kfac_jax.Optimizer(
  value_and_grad_func=jax.value_and_grad(loss_fn),
  l2_reg=L2_REG,
  value_func_has_aux=False,
  value_func_has_state=False,
  value_func_has_rng=False,
  use_adaptive_learning_rate=True,
  use_adaptive_momentum=True,
  use_adaptive_damping=True,
  initial_damping=1.0,
  multi_device=False,
)

input_dataset = make_dataset_iterator(128)
rng = jax.random.PRNGKey(42)
dummy_images, dummy_labels = next(input_dataset)
rng, key = jax.random.split(rng)
params = hk_model.init(key, dummy_images)
rng, key = jax.random.split(rng)
opt_state = optimizer.init(params, key, (dummy_images, dummy_labels))

# Training loop
for i, batch in enumerate(input_dataset):
  rng, key = jax.random.split(rng)
  params, opt_state, stats = optimizer.step(
      params, opt_state, key, batch=batch, global_step_int=i)
  print(i, stats)

Do not stage (jit or pmap) the optimizer

You should not apply jax.jit or jax.pmap to the call to Optimizer.step. This is already done for you automatically by the optimizer class. To control the staging behaviour of the optimizer set the flag multi_device to True for pmap and to False for jit.

Do not stage (jit or pmap) the loss function

The value_and_grad_func argument provided to the optimizer should compute the loss function value and its gradients. Since the optimizer already stages its step function internally, applying jax.jit to value_and_grad_func is NOT recommended. Importantly, applying jax.pmap is WRONG and most likely will lead to errors.

Registering the model loss function

In order for KFAC-JAX to be able to correctly approximate the curvature matrix of the model it needs to know the precise loss function that you want to optimize. This is done via registration with certain functions provided by the library. For instance, in the example above this is done via the call to kfac_jax.register_softmax_cross_entropy_loss, which tells the optimizer that the loss is the standard softmax cross-entropy. If you don't do this you will get an error when you try to call the optimizer. For all supported loss functions please read the documentation.

Important: The optimizer assumes that the loss is averaged over examples in the minibatch. It is crucial that you follow this convention.

Other model function options

Oftentimes, one will want to output some auxiliary statistics or metrics in addition to the loss value. This can already be done in the value_and_grad_func, in which case we follow the same conventions as JAX and expect the output to be (loss, aux), grads. Similarly, the loss function can take an additional function state (batch norm layers usually have this) or an PRNG key (used in stochastic layers). All of these, however, need to be explicitly told to the optimizer via its arguments value_func_has_aux, value_func_has_state and value_func_has_rng.

Verify optimizer registrations

We strongly encourage the user to pay attention to the logging messages produced by the automatic registration system, in order to ensure that it has correctly understood your model. For the example above this looks like this:

==================================================
Graph parameter registrations:
{'mlp/~/linear_0': {'b': 'Auto[dense_with_bias_3]',
                    'w': 'Auto[dense_with_bias_3]'},
 'mlp/~/linear_1': {'b': 'Auto[dense_with_bias_2]',
                    'w': 'Auto[dense_with_bias_2]'},
 'mlp/~/linear_2': {'b': 'Auto[dense_with_bias_1]',
                    'w': 'Auto[dense_with_bias_1]'},
 'mlp/~/linear_3': {'b': 'Auto[dense_with_bias_0]',
                    'w': 'Auto[dense_with_bias_0]'}}
==================================================

As can be seen from this message, the library has correctly detected all parameters of the model to be part of dense layers.

Further reading

For a high level overview of the optimizer, the different curvature approximations, and the supported layers, please see the documentation.

Citing KFAC-JAX

To cite this repository:

@software{kfac-jax2022github,
  author = {Aleksandar Botev and James Martens},
  title = {{KFAC-JAX}},
  url = {http://github.com/deepmind/kfac-jax},
  version = {0.0.1},
  year = {2022},
}

In this bibtex entry, the version number is intended to be from kfac_jax/__init__.py, and the year corresponds to the project's open-source release.

Comments
  • Unpack Error when using KFAC with block-diagonal for Dense networks

    Unpack Error when using KFAC with block-diagonal for Dense networks

    Hi,

    I was trying to get the example code in the readme working with the BlockDiagonal approximation. The default simply uses the normal diagonal. However, when I try to define my optimizer like this:

    opt = kfac_jax.Optimizer(
        value_and_grad_func=jax.value_and_grad(partial(expected_model_likelihood, l2=0.001)),
        l2_reg=0.001,
        use_adaptive_learning_rate=True,
        use_adaptive_damping=True,
        use_adaptive_momentum=True,
        initial_damping=1.0,
        min_damping= 0.0001,
        layer_tag_to_block_ctor={'generic_tag': kfac_jax.DenseTwoKroneckerFactored},  # Specify the approximation type here
        estimation_mode='ggn_curvature_prop',
        multi_device=False
    )
    

    then when I try to use this optimizer I get the following ValueError:

    del pmap_axis_name
    x, = estimation_data["inputs"]
    dy, = estimation_data["outputs_tangent"]
    assert utils.first_dim_is_size(batch_size, x, dy)
    
    ValueError: not enough values to unpack (expected 1, got 0)
    

    Corresponding to the curvature update method in class DenseTwoKroneckerFactored (line 1165) of _src.curvature_blocks.py. The estimation data dictionary is filled with the parameters and parameters-tangents, but I do not understand the codebase sufficiently to grasp why the inputs and outputs_tangent keys are not filled.

    In this way I cannot get the actual KFAC of this repo working... Are there perhaps some examples that make use of the DenseTwoKroneckerFactored? As far as I can tell all provided examples simply make use of the diagonal Fisher for optimization, not KFAC. But I may be wrong of course.

    opened by joeryjoery 4
  • TypeError: 'ShapedArray' object is not iterable

    TypeError: 'ShapedArray' object is not iterable

    Hi,

    I tried to run the example code, but the code stops at primal_output = self.bind(*arg_values, **kwargs), and returns the error "TypeError: 'ShapedArray' object is not iterable". Could you please help me to solve this problem? Thanks.

    opened by ltz0120 4
  • How to use kfac to train two probabilistic models jointly?

    How to use kfac to train two probabilistic models jointly?

    In my application, I need to jointly optimize two probabilistic models. They contribute to two different terms in the final loss function.

    I am wondering what would be the recommended pattern of using kfac ?
    More specifically, does it make sense to invoke kfac_jax.register_normal_predictive_distribution twice (for the two probabilistic models respectively) ?

    Thanks in advance!

    opened by wangleiphy 3
  • Correct return type annotation for BlockDiagonalCurvature.params_vector_to_blocks_vectors.

    Correct return type annotation for BlockDiagonalCurvature.params_vector_to_blocks_vectors.

    Correct return type annotation for BlockDiagonalCurvature.params_vector_to_blocks_vectors.

    jax recently added annotations for jax.tree_util and tree_leaves returns a list rather than a tuple.

    opened by copybara-service[bot] 1
  • Correct buffer donation of Optimizer._step.

    Correct buffer donation of Optimizer._step.

    Correct buffer donation of Optimizer._step.

    Buffers can only be donated if they match the shape and type of the output, which is not true for the rng state or the batch item.

    opened by copybara-service[bot] 1
  • * Modularizing the utilities file into a separate sub-package.

    * Modularizing the utilities file into a separate sub-package.

    • Modularizing the utilities file into a separate sub-package.
    • Bumping the version of the ci-actions, to remove some depracation warnings.
    • Bumping chex version.
    opened by copybara-service[bot] 0
  • - Improving docstring for optimizer. In particular regarding the damping parameter and LR/momentum/damping adaptation methods.

    - Improving docstring for optimizer. In particular regarding the damping parameter and LR/momentum/damping adaptation methods.

    • Improving docstring for optimizer. In particular regarding the damping parameter and LR/momentum/damping adaptation methods.
    • Fixing bug in default value of normalization_mode in examples classifier loss.
    opened by copybara-service[bot] 0
  • - Adding normalization modes feature to classifier loss.

    - Adding normalization modes feature to classifier loss.

    • Adding normalization modes feature to classifier loss.
    • Removing unused/pointless return values for registration functions.
    • Improvements to clarity and correctness of docstrings for registration functions.
    • Simplifying batch_size_extractor.
    • Adding white space for improved readability.
    • Fixing _update_cache to account for state_dependent_scale (which is currently unused in the open source release).
    opened by copybara-service[bot] 0
  • * Making the estimator finalize itself automatically.

    * Making the estimator finalize itself automatically.

    • Making the estimator finalize itself automatically.
    • Making the optimizer call finalize at the end of init.
    • Removing the need for fake_batch in the optimizer.
    opened by copybara-service[bot] 0
  • - Using jnp.int64 for data_seen and step counters to avoid overflow

    - Using jnp.int64 for data_seen and step counters to avoid overflow

    • Using jnp.int64 for data_seen and step counters to avoid overflow
    • Using float for epochs instead of int
    • Adding extra arguments to cosine schedule in examples
    opened by copybara-service[bot] 0
  • Correct buffer donation.

    Correct buffer donation.

    Correct buffer donation.

    Buffer donation is only valid if the shape and type of an input buffer matches an output. Buffer donation only works with positional arguments, not keyword arguments.

    opened by copybara-service[bot] 1
Releases(v0.0.3)
  • v0.0.3(Sep 23, 2022)

    What's Changed

    • Changing the version in the citation text in the README. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/29
    • Adding attributes for the number of training and evaluation devices. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/31
    • Adding some methods to ImplicitExactCurvature by @copybara-service in https://github.com/deepmind/kfac-jax/pull/32
    • Adding "put_stop_grad_on_loss_factor" argument to 'multiply_fisher_factor'. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/36
    • Making ScaleAndShift blocks begin capable of having parameters that are broadcast by construction, e.g. batch norm with scale parameters [1, 1, 1, d]. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/33
      • Changing jax.tree_map -> jax.tree_util.tree_map and related due to recent deprecation. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/37
      • Removed unused precedence argument from GraphPattern. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/38
    • Fix a small bug where we don't check in the jaxpr constvars. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/39
      • Adding an estimator attribute to the optimizer. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/34
    • Updating the docs to correctly refer to update_cache. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/40
    • Compare with slightly less numerical precision. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/41
      • Revamping the graph matching code to be able to detect layers and register tag in arbitrary higher-order Jax primitives. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/42
    • Revising docstring for optimizer class. Now contains missing details about value_and_grad_func. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/43
    • Internal change. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/44
      • Make LossTag to return only the parameter dependent arrays. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/46
      • Improving LossTags to be able to deal correctly with None arguments, by passing in argument names. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/47
    • Minor fix to a bug introduced on previous commit. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/48
      • Correcting issues with docstring for optimizer. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/45
    • Fixing a bug in the graph matcher introduced in a recent CL. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/49
    • Removing unneeded jax.jit in get_mean and get_sum. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/50
      • Adding per-parameter norm stats to optimizer by @copybara-service in https://github.com/deepmind/kfac-jax/pull/51
    • Allowing the pi-adjusted psd inverse to accept diagonal factors. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/55
    • Fixing wrong type annotation of pmap_axis_name. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/56
    • Adding optional offloading of eigh computation to the host because of a bug in CUDA 11.7.0 cuSOLVER library. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/57

    Full Changelog: https://github.com/deepmind/kfac-jax/compare/v0.0.2...v0.0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Jun 7, 2022)

    What's Changed

    • Moving .github to top-level directory for CI. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/1
      • Updated documentation for state classes. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/2
    • Changing the name on PyPi to kfac-jax. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/3
    • Making the tracer test in float64. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/4
      • Allowing graph patterns with multiple broadcast to be merged without dangling equations. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/5
      • Adding README for the examples. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/7
    • Changing deprecated tree_multimap to tree_map. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/8
    • Fixing small error introduced due to updates to chex. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/11
    • Fixing typo "drop_reminder" by @copybara-service in https://github.com/deepmind/kfac-jax/pull/13
      • Adding an argument to set the reduction ratio thresholds for automatic damping adjustment. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/12
      • Adding "modifiable_attribute_exceptions" argument to optimizer by @copybara-service in https://github.com/deepmind/kfac-jax/pull/14
    • Changing Imagenet dataset in examples to use a seed for file shuffling to achieve determinism. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/17
    • Small fix to a doc reference bug. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/16
    • Making WeightedMovingAverage to work with arbitrary structures. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/19
      • Minor typos. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/20
    • Correct buffer donation of Optimizer._step. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/21
    • Replacing yield from with direct iteration. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/24
    • Adding stepwise schedule option to examples. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/18
    • Publishing a new version to PyPi. by @copybara-service in https://github.com/deepmind/kfac-jax/pull/28

    New Contributors

    • @copybara-service made their first contribution in https://github.com/deepmind/kfac-jax/pull/1

    Full Changelog: https://github.com/deepmind/kfac-jax/commits/v0.0.2

    Source code(tar.gz)
    Source code(zip)
Owner
DeepMind
DeepMind
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023