Measure WWjj polarization fraction

Overview

WlWl Polarization

Measure WWjj polarization fraction

sm sm_lltt sm_lttl

Paper: arXiv:2109.09924
Notice: This code can only be used for the inference process, if you want to train your own model, please contact [email protected].

Requirements

  • Both Linux and Windows are supported.
  • 64-bit Python3.6(or higher, recommend 3.8) installation.
  • Tensorflow2.x(recommend 2.6), Numpy(recommend 1.19.5), Matplotlib(recommend 3.4.2)
  • One or more high-end NVIDIA GPUs(at least 4 GB of DRAM), NVIDIA drivers, CUDA(recommend 11.4) toolkit and cuDNN(recommend 8.2.x).

Preparing dataset

The raw dataset needs to be transformed before it can be imported into the model.

  • You need to create a raw dataset(we provide a test dataset, stored in ./raw/), the data structure is as follows:
The file has N events:
   Event 1
   Event 2
   ...
   Event N
One event for every 6 lines:
   1. first lepton 
   2. second lepton 
   3. first FB jet 
   4. second FB jet 
   5. MET 
   6. remaining jet 
Each line has the following five columns of elements:
   1.ParticleID  2.Px  3.Py  4.Pz  5.E
The format of an event in the dataset is as follows:
   ...
   -1.0  166.023   5.35817   10.784    166.459
   1.0   -36.1648  -64.1513  -28.9064  79.113
   7.0   -11.3233  -39.6316  -318.178  320.85
   7.0   -34.2795  22.0472   622.79    624.128
   0.0   -22.6711  52.8976   -422.567  426.468
   6.0   -49.9758  29.3283   274.517   294.098
   ...

ParticleID: 1 for electron, 2 for muon, 3 for tau, 4 for b-jet, 5 for normal jet, 0 for met, 6 for remaining jets, 7 for forward backward jet, signs represent electric charge.

  • Use the command python create_dataset.py YOUR_RAWDATA_PATH, it will create a file with the same name as YOUR_RAWDATA_PATH in the ./dataset/.

Using pre-trained models

After completing the preparation of the dataset, you can use the model to predict the polarization fraction.

  • Pre-trained weights are placed in ./weights/.
  • Use the command python inference.py --dataset YOUR_TRADATA_NAME --model_name <MODEL_NAME> --energy_level <ENERGY_LEVEL>, it will give the polarization fractions.

Notice: <ENERGY_LEVEL> should correspond to the collision energy of events.

Example

Run the following command to get the polarization fractions for the standard model:

python create_dataset.py ./raw/sm.dat
python inference.py --dataset sm --model_name TRANS --energy_level 13

Citation

@misc{li2021polarization,
    title={Polarization measurement for the dileptonic channel of $W^+ W^-$ scattering using generative adversarial network},
    author={Jinmian Li and Cong Zhang and Rao Zhang},
    year={2021},
    eprint={2109.09924},
    archivePrefix={arXiv},
    primaryClass={hep-ph}
}
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022