Python beta calculator that retrieves stock and market data and provides linear regressions.

Overview

Stock and Index Beta Calculator

Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resamples it to provide the beta for 6 different timeframes and frequencies. The beta is calculated boy using both a formula and linear regression. The betas calculated are:

  • Monthly 5 Years
  • Weekly 5 Years
  • Monthly 3 Years
  • Weekly 3 Years
  • Weekly 1 Year
  • Daily 1 Year

Background

The beta of a stock measures the volatility of its price in relation to the market or index. The return on a stock with a beta of 2.0 would generate a return twice that of the market - if the market goes up 2%, the stock price would be expected to increase by 4%. This measure of volatiltiy is also called systematic risk, undiversifiable risk or market risk. Some major uses of beta are:

  • Measuring the risk of a portfolio to the market
  • Measuring the volatiltiy of an industry compared to the market
  • Estimating the required return on equity of stock in the Capital Asset Pricing Model (CAPM) or Weighted-Average Cost of Captial (WACC)
  • Estimating the effects of debt on a company's volatility (beta re-levering)

Process

There are two methods used to calculated beta.

  1. Using the formala, β = Cov(ri, rm)/σ^2m i.e. the covariance between the returns of the stock and the market divided by the volatility of the market.
  2. Running a linear regression of the returns of the market against the returns of the stock, the slope of the regression line is the calculated beta.

The script displays the results from the first method in the console and used the second model to generate graphs.

Usage

The function beta() uses the following paramaters:

Name Symbol Description
Stock Ticker ['ticker1', 'ticker2', ... 'tickern'] The tickers of the stocks beta is to be calculated for
Index/Market Symbol market The symbol of the index beta is to be measured against, S&P500 (^GSPC) by default
Adjustment adjusted The number of times beta will be adjusted (0 by default)

The function retrieves data from yahoo finance using Pandas DataReader, index codes must match the codes on their website (linked below), major codes are listed below.

Country Major Index Ticker Suffix
Australia ^AXJO for ASX200 .AX, 'CBA.AX'
Canada ^GSPTSE for S&P/TSX .TO, 'RY.TO'
Hong Kong ^HSI for Hang Sang Index .HK, '1299.HK'
Japan ^N225 for Nikkei 225 .T, '7203.T'
United Kingdom ^FTSE for FTSE100 .L, 'ULVR.L'
United States ^GSPC for S&P500 N/A, 'AAPL'

List of all indexes: https://finance.yahoo.com/world-indices

Typically beta is adjusted to better estimate the security's future beta. Typically, betas are mean-reverting and will approach to the market value of 1.0 overtime. Typically beta will be adjusted once in practice.

Required Libraries

  • datetime
  • dateutil
  • itertools
  • matplotlib
  • numpy
  • pandas_datareader
  • scipy

Related Projects

Binomial Option Pricing Calculator: https://github.com/sammuhrai/binomial_option_pricing_calculator

Disclaimer

Script is for educational purposes and is not to be taken as financial advice.

Owner
sammuhrai
sammuhrai
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Mohammed Hassan 13 Mar 31, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
Flexible HDF5 saving/loading and other data science tools from the University of Chicago

deepdish Flexible HDF5 saving/loading and other data science tools from the University of Chicago. This repository also host a Deep Learning blog: htt

UChicago - Department of Computer Science 255 Dec 10, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Yongxian (Caroline) Lun 1 Dec 27, 2021